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S1. Introduction and Notation

The purpose of this article is to give an account of the

application of single variable dispersion relations to calculate the main

parameters of low energy pion-nucleon scattering and the low energy

phase shifts. The input data consists of fairly complete information

about the total cross-sections and the dominant resonances of the -X-N

system. Our aim is to give precise numerical values of the parameters

and low energy phase shifts, since these quantities are required for a

variety of purposes in other investigations. We do not attempt here to

give any physical discussion of low energy pion-nucleon scattering

Also it should be emphasized that this article only discusses those

topics with which one or both of the authors have been directly involved.

(1) For a physical discussion of the dominant ( 3/1 , 3/; ) state see

G.F.Chew and F.E.Low, Phys.Rev., 101, 15?0 (1956). For the remaining

p-wave states and the s-wave states see for example, J.Hamilton, P.Menotti,

G.C.Oades and L.L.J.Vick, University College London, Preprint (1962)

We do not claim any completeness for the topics discussed or for the

references.

(i) Summary of the Topics Discussed

In ýl1(ii) we give the relativistic notation for the pion-nucleon

scattering amplitudes which was used by Chew, Goldberger, Low and Nambu(2)

(to be referred to as CGLN). This notation is used throughout.

(2) G.F.Chew, M.L.Goldberger, F.E.Low and Y. Nambu, Phys.Rev. 106t 1337
(1957)
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In the same section we give the charge notation, the appropriate partial

wave analysis and the basic dispersion relations themselves.

In applying dispersion relations, the questions of high energy

behaviour and the subtractions are of considerable importance. In 2

we discuss their mathematical and physical features both for forward and

fixed momentum-transfer pion-nucleon scattering. This involves some

account of Pomeranchuk's theorem and the Regge pole method.

Physical measurements of pion-nucleon scattering are conveniently

expressed in terms of partial wave amplitudes and phase shifts, but the

dispersion relations which are useful for our purposes refer to

scattering amplitudes. The relation between these quantities is given

by the Legendre series for the expansion of scattering amplitudes. The

rate of convergence of this series and of its inverse is a matter of basic

importance in any attempt to predict low energy pion-nucleon phase shifts

by dispersion relations. In ý 3 these convergence problems are examined.

We use both tie domains of convergence given by Lehmann's theorems, and the

larger domains of convergence which follow from the Mandelstam representation.

(In this article the Mandelstam representation has only been used to give

these domains of convergence of the Legendre series and of its inverse.

Moreover the results of the calculations of partial wave amplitudes appear

to give strong support to the validity of the larger domains of convergence

which are obtained from the Mandelstam representation).
Scalulaion(3)

In 4 we give an account of Woolcock's calculations , and other

determinations, uf the parameters of low energy pion-nucleon physics.

(3) W.S.Woolcock, Ph.D. Thesist Cambridge University (1961)
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Various improvements are made in the original calculations. The parameters

are the coupling constant f 2, the s-wave scattering lengths al, a3, the

p-wave scattering lengths a2 T, 2 J , and the curvature constants in the

parametric form for the low energy s-wave phase shifts. The calculations

are based mainly on the use of forward and fixed momentum transfer dispersion

relations for various pion-nucleon scattering amp-itudes (these are really

sum rules). The dispersion relations are evaluated by using the considerable
+

amount of accurate experimental data which is available on the total %--p

cross sections, and the reliable information which we have about the

resonances of the ,-N system. An effort has been made to give a careful

assessment of the errors in these determinations of the parameters.

In 5 the fixed momentum transfer dispersion relations are used to

predict the s-wave and p-wave pion-nucleon phase shifts at low energies.

The method is an improved form of the CGIU calculations(2); all recoil

and relativistic effects are included and only the f-waves (and higher)

are ignored. Again the original calculations(3) are improved in various

ways and a careful assessment of the errors is included. The input data

is the same information about the total cross-sections and resonances as

is used in 4.

The main limitation on the method is the convergence of the

inverse of the Legendre series which, as was mentioned above, is needed to

deduce the partial wave amplitudes from the calculated scattering

amplitudes and their derivatives with respect to momentum transfer.

As the energy increases, the domain of convergence becomes smaller

and the rate of convergence of the inverse series deteriorates rapidly.

In practice this means that the corrections due to f-wave, g-wave, ...

terms, which we ignore, bec me large, and further, errors in the results
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due to inaccuracies in the d-wave subtraction term (in one of the A(+)

relations) can be troublesome. A complete and (we believe) accurate

prediction of the s-wave and p-wave phase shifts is possible up to about

120 MeV (lab) energy, and the results are in good agreement with the

accurate experimental values which are available. Above 120 MeV we

can only predict certain special combinations of the scattering amplitudes.

It is expected that the rate of convergence of the inverse series in

the (-) charge combination is good up to around 300 MeV, and the

corresponding partial wave amplitudes turn out to agree w.ll with

experiment in the p-wave case. For the s-waves the results in the C-)

case up to 300 MeV should be reasonably reliable. Another special case

is the f2 - amplitudes which again avoid the difficulties just discussed, up

to around 220 MeV. The relation between these two special cases and our

knowledge of the pion-pion interactions is discussed fully.

(ii) Kinematic Invariants and Invariant Amplitudes

We shall use the notation of CGIN(2). The S-matrix elements for

elastic n-N scattering can be written

J25o "" - 21) (1)

where elli= 0 unless there is no scattering (then -.' =1).

El, E2 are the initial and final nucleon energies, and pl, P2 are the

initial and final nucleon energies, and pi, P2 are the corresponding

4-vector energy-momenta. td, W and ql, q2  are the same quantities for

the initial and final pions. t, and u are the initial and final

spinors for the nucleon, normalized so that (for nucleons) 71 Ct1 = ý21t2=1

M is the nucleon mass and • is the pion mass.
The 4 x 4 matrix T is a Lorentz invariant(4)

(W; Strictly it is 2 T tý which is invariant

It can be exprersed as a function of the kinematic invarianta, which in

turn are formed from the three independent 4-vectors associated with the

scattering. These are

A' =P-J 214 .4~



Two independent invariants (apart from the masses) can be formed, and

it is convenient to take

M t = 4 2 (2)

We can write T in the form

T= -A + i X.Q B (3)

where M 1 and A, B are scalar functions of the kinematic

invariants v , t. The quantities }. and t between them specify the

energy and the scattering angle. It is easy to deduce from (2) that

t = -2q (1 - Cos @)

(4)
= ' /4M

2
where 60L is the energy of the incident pion in the lab. system, q

is the square of the momentum of either particle in the c.m. system,

and 9 is the scattering angle in the c.m. system.

It is sometimes convenient to use the pair of kinematic

invariants

S= -(pi + q) 2  t= - (q, - q) 2

Evaluating 5 in the lab. system we find

14 2 +2 + t• 5

M2 + 2 +2M - t/2

The variables s and t are used in the Mandelstam representation(5)

and it is often convenient to use also a third invariant u. defined by

(5) S. Mandelstam, Phys. Rev. 112, 1344(1958), and 115, 1741,1752
(1959)

S+ t + u =2M2 + 2 2  (6)

so that

u= M + 2- 2M _ 12 (6a)
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(iii) Charge Properties

It is customary but not necessary to assume charge independence

in analysing the amplitudes. A and B are then 3 x 3 matrices (AM/),

(Bat) ) where a, p = 1,2,3 are the pion charge indices. By charge

independence we can write

A = M cz + A •L;, J

B+ BB-) •'t t (7)

where 'r ( = 1,2,3) are the 2 x 2 isotopic spin matrices for the

nucleons. Clearly A(W , B(÷ refer to the parts of (A4 ) (B

which are symmetric in the charge indices (m,/3 ), and A , B

to the anti-symmetric part. No transfer of charge between pion and

nucleon occurs in the A W+, B(+) parts, so they do not require any T

matrices.

The amplitudes A(T), B( T) for n-N scatterihg in isotopic

spin eigenstates T = )1, 3/1 are related to A ), B(-) by

A+ Y3= A 06 + .-jA (361- ) = A(+) + 2A
(8)

A = 16 (A - A (3/L)) A('/-) = A-

Identical relations hold for the B amplitudes.

We can avoid relying on charge independence (cf ý 4(i)(c)) if

we define A(t), B(+) in terms of the amplitudes A+, B+ and A_, B

which describe the elastic scattering processes n++p -* n+ + p and

%" + p --- n- + p respectively.

It is easy to deduce from (8) that

A W = W(A+ +A-) , A(')V(A.-A+)

(9)B()= )i(B+ + B.) , B(')= i(B_ - B+)
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If we do not wish+to am ume charge independence we take (9)

as the definition of A B This indeed corresponds to what

happens mostly in practice, since for elastic n-N scattering in general

we only use experimental results on n+ + p -> R+ + p and

n + p .- ,1 x" + p scattering.

(iv) Crossing Symmetry

Let the scattering amplitude for the process in equation (1)
be written /,2' q2 1 T I P1 ' q1 ' a> . Then Low's expression

for this quantity in terms of Heisenberg opeiators and real state vectors

shows the symmetry property(6)

<P 2 1 q2 3 jTJ PI,qlc> -<P 2 7q, aI TIp1, -q 2 ,8> (10)

(6) See for example J. Hamilton, Theory of Elementary Particles,

(Oxford 1959) Chapter VI, para. 5

This replacement q 1 - -q 2 , a -) leaves P and A unaltered

and reverses ( Q-) -Q). Thus it gives

S-> • , t - t, (11)

and by (5) and (6a)

t t - u- , u --+ s (12)

Remembering that A(+) is the symmetric part of (A a) we get
(from (10) and (3) and •.Q -v -r. Q)

A(+ (- ,t) =A(( W ,t) , B(+)(-V, t) =-B(+)C(V),t)

(13)

A( -) -', t) = -A (-) t), B(-) ( V , t) B(-) ), t)

Again, we can if we wish, derive thd crossing relations (13) without

using charge independence. From equation (3) and definition (9) we

have

T()= WT+ + TT) , T(-) = T- T+) (14)

where T+ and T. are the amplitudes for x+ + p--+ w + p and



8.

i" + p - i" + p respectively. The crossing property follows

directly from Low's relation. It relates physical % + + p scattering

to unphysical n" + p scattering and vice versa. We have,

<p2, q2 T+ pl q,' q> =<r2 4//T P'q'

(15)

< p2 q2 q I T PCl'ql> = <p 2 q -q f T+ p, -q2 >

Thus by (14) T(+)(-W , t) = T ()(,t), T()(-)))t) = -T (-)(Pt)

Now using (3) we obtain (13)

(v) The Dispersion Relations for A and B

We are here only interested in dispersion relations for fixed

momentum transfer t. The positions of the singularities are easiest

expressed in terms of the invariants s and u (eqns (5) and (6)). There

is the single nucleon pole at s = M2 (the Born term), and the corresponding
crossed pole at u = M2. There is the physical cut s > (M + 4)2 and the

crossed cut u,> (M + i)2. By (5) and (6 a) we express the positions of

these singularities in terms of y * Using Cauchy's theorem and eqn (13)

in the way indicated in 2(i) below and Fig. 1 and ignoring for the

moment any questions about convergence, we get the dispersion relations

for fixed momentum transfer t.

These eqns, which were first written down by CG (2), are

6- + PJ dy',l. Y tL-j(
(17)

2
Here t 2Here YB - - + ; is the position of the nucleon pole, and Ga.

is the rationalised renormalized (Watson-Lepore) pseudo-scalar coupling

constant. The Born terms in (17) are calculated by second order
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perturbation theory. The reason why they appear in the B equations

but not in the A(-) equations is that at low energies the pseudo-scalar

n-N interaction is equivalent to a pseudo-vector x-N interaction. This

latter type of interaction must involve the nucleon spin a" , so it can

contribute to the M.Q term in (3) (i.e., to B), but not to A.

It has been proved(7) (assuming microscopic causality and the

usual asymptotic axioms of field theory) that for fixed t, such that

0 . _t .< 32 •-• •M 2• 12 I2
%3 2M- * 2L

th$ above enumerated singularities are the only singularities of A (V,t),

B(-)( C ,t). To establish the dispersion relations (16) and (17) (or

subtracted versions of them) for these values of t, it is only necessary

to examine their convergence properties; this will be done in 2.

(7) H.J.Bremermann, R. Oehme and J.G.Taylor. Phys.Rev. 109, 2178 (1958);

H. Lehmann, Nuovo Cimento 10, 579 (1958)

(vi) Partial Wave analysis

We now set down the relations between the invariant A and B

amplitudes and the usual partial wave amplitudes. From (1) it follows

that the differential cross-section in the c.m. system is

c.g- = ( M 2 2 (18)

dfL 1(;?£_2Tuj

where E denotes the sum over final spin states and the average over the

initial spin states. Also

W = (M2 + q2 )Y 1+ (_ 2 +q 2 ) ' 2 (19)

is the total energy in the c.m. system. Clearly = a.
We can also write the differential cross-section in the c.mo

system in the form

'4 = E f I M I i.>12  (20)
where I i> and If> are the Pauli spinors for the in..tial and final

nucleon states. M is commonly written in the form
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M1 =f () + (cr.n ) g (o) (21)

where Q is the c.m. scattering angle and n = !4 x q1 /1q2 x q1l is the

normal to the plane of scattering. f(G) and g (Q) are the no-flip

and spin-flip amplitudes respectively. A more convenient form is

M = f 1 (0) + _ 32)_ 1 _),,f2 (9) (22)
q2ql

The relation between (21) and (22) is

f(Q) = fl(0) + Cos f 2 () (23)

ig(G)= Sin 9 f2 (9)

The form (22) connects directly with the helicity amplitudes(8)

Denoting the nucleon's helicity by subscripts + or -, we have

(8) M. Jacob and G.C.Wick, Annals of Phys. 7, 4o4 (1959)

M+, =<f~I i > * f2) M = (ffl i,> . (f1 - f 2 ) etc. (23a)

where the subscripts t denote the helicity, and I i+ > I f+ > are

the spin state vectors. Using I f > = exp(-i a. - /q5 )

exp(i v•. &/Z ) exp(i 0 1 /z ) I i > gives

< f I i,> =<f. I i_> = Cos(/ 2 )

(23b)

<f_ I i+> - eiCSin(Q/1 ) <f+ i.> = eiOSin(Q4)

From (18) and (20) we relate M to T in the c.m. system by the convention

-M
<f I M I i> = ; -- TuI (24)

Using the representation in which

1 0' 00 
0 .0 A! 0-£ o
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the Dirac (4 -c mponent) spinors Ul, u2 can be expressed in terms of the

Pauli (2 component) spinors i > , I f> by

I'Ll = ý--L /t >) CZ=(,Io• -d' (25)

Substituting (25) in (24) we relate M (eqn. (22)) to T (eqn.(3))

A little elementary manipulation gives

f E+ L A + (W-M)BJ (26)

2f E-M f-A + (W+M)Bj

Here E = ( M2 + q 2)1 is the energy of the nucleon in the c.m. system.

In connection with (26) it is useful to notice that

E t M = (t 2 (27)
2W

Substituting (27) in (26) and using (5) (and W2 = s) we can express

f and f. in terms of the invariants s and t, or y and t.

The conventional partial wave expansions are

fei = Z_(t*I+'e ÷ef+ + I< <•
42?

21)7ief f} - I -e (28)
I /.

where I = cos 0 and P Pe.()(ýL) are ordinary and associated

Legendre polynomials. ft+ are the partial wave amplitudes(9), and in

the elastic region f = e it Sin it* /q. Using the relations

P (-L)= Sinope (i) and

(i+'i)pi~ = -•, p

, 
(29)

eqns.(28) and (23) give
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(30)

(9) f , and are the partial wave amplitudes and phase shifts

for the states with orbital angular momentum t and total angular

momentum j = - t 3 respectively.

The orthogonality relations associated with (30) are

ft,At 1,{ P,..<;- P.,e-.)} = xjj

They give

jfiu..P + ~

(vii) Laboratory System Relations

We use q and qL for the c.m. and incident lab. pion momenta.

We always use E and W to denote the nucleon energy and the total energy

in the c.m. system. The (total) lab. energy of the incident pion is cL

Then we have

q• W

q (31)

and

= - M (32)

The forward scattering amplitudes f. (q. , 0), f(qO) in the lab. and

c.m. system are related by

f L (q ,0) = f(q,O)/q (33)
I-q

The forward amplitude in the c.m. system is deduced from (23)

(26) and (32). It is

f(q,O) MM (A + LB) (34)
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By (31) and (33)

fL (q L 0) = (A + wL B) (35)

For the real part of the forward scattering amplitude we shall

use the notation

D( uL) = Re fL (qL' )6)

DB(fo) = Re f (q,O)

As a special case of (33),+the threshold, values of the scattering

amplitudes D+ (O2,) for n- - p scattering are given by

( 1 3

(37)
D_(1) +( + ) 1I (2aI + a3)

where a and a3 are the s-wave scattering lengths in the isotopic states

T = Y and 3/. Finally, the optical theorem can be written in two forms.

Im f (qL ' 0) = q,_ _ O tot

(38)

1s f (q,0) = 0 tot
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2. Subtractions. Hiah Energy Behaviour and the Sum Rule

From our knowledge of the positions of the singularities of

a scattering amplitude as a function of the energy we can, as in eqns(1.16)

and (1.17), set up a dispersion relation merely by using Cauchy's Theorem.

However, this relation will not be valid unless certain high energy

convergence conditions are obeyed. If these conditions are not

satisfied, one or more subtractions must be made in order to obtain a

valid dispersion relation. Since it is particularly necessary in making

numerical applications that we are sure that we are using valid dispersion

relations, we shall examine carefully the problem of the number of

subtractions which is required.

In order to apply these general ideas in any particular case

it is necessary to know the high energy behaviour of the various terms

in the dispersion relation. This presents us with two somewhat difficult

problems; (a) the mathematical question of determining the limiting

behaviour of principal value integrals, (b) the physical question of

conjecturing the asymptotic behaviour of scattering amplitudes.

In the first half of this chapter ( 62(iI - 2(v)) we discuss

these problems with particular reference to forward n -p scattering. It

is convenient to do this because of the considerable amount of information+

which is available about forward n -p scattering. We include some

discussion of two interesting features which are associated with the high

energy behaviour; Pomeranchuk's theorem, and the sum rule. In the second

half of the chapter C 4 2(vi) - 2(ix)) we examine the high energy

behaviour of the amplitudes A(s,t), B(s,t) and the question of what

subtractions are needed in the dispersion relations (1.16) and (1.17).

The reader who finds these discussions of subtractions and high

energy behaviour to be tedious can ignore this chapter (except for 3 2(iv)

on the sum rule). All the dispersion relations used in 4 and 5 have

the correct number of subtractions;

Ci) Additive Polynomials and Subtractions

When the integral in a dispersion relation (like (1.16) or

(1.17)) does not converge the usual procedure is to subtract, i.e., extra

factors are inserted in the denominator of the integral until convergence

is achieved. This automatically produces an extra polynomial - the
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additive polynomial - on the right-hand side of the dispersion relation, as

can be seen from eqn (3) below. Strictly speaking there are two distinct

features here. In a dispersion relation of the usual type like (1.16) or

(1.17) the number of subtractions is determined by the behaviour of the

imaginary, or absorptive part of the scattering amplitude at high energy,

whereas the degree of the additive polynomial can also depend on the

behaviour of the real, or dispersive, part of the scattering amplitude at

high energy.

Let f(s) be a scattering amplitude, where s is the energy or

a function of the energy; f(s) can be the forward sctttering amplitude, or

it can be any linear combination of the amplitudes A(-)(s,t), B(')(s,t)

(for fixed momentum transfer t) defined above in ,1.
We know that f(s) as a function of s has cuts along - 0 - s < s0)

s1 r s ,• • and we derive a dispersion relation for f(s) by writing

f(s) = 2•8.. f f._) ds' (i)

where C is the small circle about s sh;wn in Fig.1.

Next we blow up the contour C until it is replaced by contours

around the cuts as shown in Fig.1 plus C,. , the circle at infinity in the

complex s-plane. The integral around the infinite circle

i j f(s'_.)_
2ni 81- ds'

may not converge, and if this is so, we have to replace it by an additive

polynomial.

Suppose(10) that for Is I -" e , if(s) a I N-a

where N is a positive integer and E is a small positive number.

Define the function g(s) by

g(s) = N--

j=O

where sj(j-=O, 1, ... N-I) are real constants. Starting from the Cauchy

integral

(s)= c (- ds'

(10) A eMilar argument was used by J.Hamilton, T.D.Spearman and
W.S.Woolcock, Annals of Physics 17, 1 (1962) (see VB)
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we get the dispersion relation

N-1
1~s RB, a(') ds'+ 7

gas) 1 J SI-a (2)

"(uts) J=0 O

where d g(s') is the discontinuity in g(au) across the cut at a'.

The terms aj I(s-a ) arise from the poles at a = a which we introduced

in the definition of g(s). There is no contribution to (2) from the

infinite circle C., , since Ig(s) I goes to zero faster than a -l

(where 9 > 0) as sI--co . The numbers a (j = 0,1, .. o N - 1)1which

are independent of a ) are not determined by the dispersion relation

itself; they represent physical information (scattering lengths etc.,)

which we must insert before we can evaluate the dispersion relation.

From (2) we get the dispersion relation

N-1
f(s) A +A.. +A SN-1 + 1 T (s-s.) do'

o 1 N- 21tij=O f uts) 8 8)N 1( o-jPTO (1 )

where /f(s') is the discontinuity of f(s') across the cut at s°,and

Ao,A1 A N • are arbitrary constants (they will in general be functions

of the momentum transfer t). If N = 1 the polynomial on the right of

(2) reduces to the constant f(s 0 ).

We assumed above that the complete amplitude f(s) obeys the

inequality If(s)l < jo-V' as |sJ-- oo for real or complex a. It may

happen that on the real axis oaf(s) (which is in general the imaginary part

of f(s)) obeys the stronger inequality if(s) I < li(N'-s) (11) -
where E > 0 and N is zero or a positive integer, with N C N. In that

case we get a different dispersion relation. By successive use of

(11) The notation a -+ ±00 always implies that s goes to

infinity along the real axis.

the relations

se - q n' -(3 c b- i in -fr

eqn (3) can be written in the form
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F= Aj N - 1 1 frs , d o ' _ f (s ')
f(s) = A +A s+ "'" +AN'1*' * 0 +Fr (cuts) (_, (s'-s) ()

j=O

where A'o, At are arbitrary constants. If N' = 0, we must

replace N'1 -1r a N (s-s ) and TT'(s8-s) bj unity. Letting s tend to the

j=0 j=0

upper side of the physical cut(12) gives the dispersion relation

(12) The physical value of an amplitude is always defined by its value

as s moves in to the upper side of the physical cut.

Ref(s)=A.+A's+ *..+A•sN-i 1 =O (u)pfds' )" f(s')

o =0ir (cut.(sI-s) F ( NI -

j=0

The number N' of subtractions which are required in the integral

in (5) is determined by the experimentally known behaviour of 6 f(s)

(i.e., of Im f(s) ) as s -> t 00 . The number N is given by the behaviour

of I f(s) I as Isl -.*o. However, N can be found in practice as

follows. We find the asymptotic behaviour of the integral in (5) as s--+,

Using eqn(5) and the known experimental behaviour of Re f(s) as s -. +

now determines the integer N. There appears in general to be no a priori

reason to assume that N = N'.

We shall show in the following sections how this method is

applied in various practical cases. A somewhat awkward feature is the

determination of the asymptotic form of the dispersion integral as s -P 160

and we shall quote several theorems which are of value for this purpose.

(ii) Theorems relating to forward n -p scattering

We first show how the problem of subtractions and high energy

behaviour can be treated for forward scattering. Let D+ ( ,ja) be the
+

real part of the lab. system forward scattering amplitude for ,- + p at

lab.(kinetic) energy ( 1O) -&). From eqns (1.35),(I.16) and (1.17) we can
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write down the once subtracted dispersion relations

? -M (6)

+

Here 0(w0) are the total cross sections for 7t + p at lab (kinetic)
t12 2 )

energy ( 4a -i), and q' = ( & -i. ) is the corresponding lab. momentum.

Also % 2 (• - ýL)) and f = G)/2M is the equivalent pseudo-vector

coupling constant. CUp to p2(v) we shall frequently use Ij 9L, LU
1 ,

and in these sections they always denote the lab. pion energy.J

We shall now show that the single subtraction and the first

degree polynomial ineqn. (6) are sufficient. For this we must know the

high energy behaviour of 07+( W ) and D+ ((o )/to and the asymptotic

behaviour of the integral ii (6) as *u-•' . The mathematical

techniques which are required are neither trivial nor are they

particularly well known, and we shall state the most useful genefal

theorems. The same methods are necessary for discussing the A ()and

B dispersion relations in P j 2 (vi) and (vii) below.

We can obtain a rough idea of how the principal value integrals

in eqn.(6) behave as wL-0 c by using a basic theorem on Hilbert

transforms.

(13) E.C.Titchmarsh, Theory of Fourier Integrals (Oxford 1948)

Theorem 101.

Let L b (- 0 ,• ) denote the class of real functions f(x) such that

dx I fx) e P
exists. Then we ve3)

Theorem A If f(x) belongs to LA (-W ,C0) where p > 1, then the

formula 1 g0)4f_?
g(x) P=f( ) dy (7)

• y-x

almost everywhere defines a function g(x), and g(x) also belongs to

L (- oo , a ). Further, g(x) and f(x) are Hilbert transforms of each
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other.

We apply this theorem to the integrals
do

1 p dq' IAI(I'g, n•L q1 '"+L (8)

where T(&)') represents either of cr(w'). So in the g+ case we

take

f(w') i' to' ' -I•

and in the g_ case

o , •,' < IL.

Restrictions on the Cross-sections 0' (to) The cross-sections 0(u )

are continuous functions of w , and we shall also assume that they

have bounded derivatives with respect to W) . This means that the words

'almost everywhere' can be dropped from Theorem A, (iUe., g+(4) L) are

everywhere finite; We also make the very plausible assumption that

T+(I) are bounded as ct. -> o .

With these assumptions, f( tj ) is in L ( -de,o t) with(14)

1 e p e 2. New Theorem A shows that g+(A)LL) is in L" (- o, ). The

consequences are important. First, it is necessary that

(14) For (v'= I, f(t,') - 1 2IL(w '-v) " so p ,o 2 is not possible.

If necessary the restriction p C 2 can be removed by writing f(cu') =

00(•,')- W(i0) + ( . The second term can be evaluated explicitly,
q1 q1

and for the first, 1 e p cO0.

g+ (W L)O as W L -> Next suppose that gg(wL)I behaves like

WL(- nInUL )n as L--> o, where n is some integer. Because g(UL) is
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in LP we must have A > 1/p. Also p can take any value in 1 4 p< 2.

Thus Ig(U"L)I WL1 "- > 0 as ''L- , 0 where is any small positive

number. The functions 1L, (/n ,L)/•dL, (n n &L) 2/L, etc., are

therefore possible examples of the behaviour of g(tuL).

The restriction that C0(w ) should have bounded derivatives

is convenient but is not necessary. We could include the case of cusps
in cr(tu) by using Theorem 106 of Titchmarsh(13). This states that g(x),

+

given hy eqn.(7), exists for all x and belongs to LO (-oa, oc), provided

f(x) belongs to LO (-aoe)(p> 1) and obeys a Lipschitz condition.

/f(x+h)- f(x) I < h

uniformly in x as h--* 0. K is some constant. Also g(x) obeys a

Lipschitz c-)ndition with the same a . Taking a = Y we can include

any cusps(15) and we see that in this case g+(a)L) are continuous.

(15) We assume that all cusps in C-+ are of the square root type, hence

the choice a = )ý.

Asymptotic Behaviour of Principal Value Integrals

We wish to be able to make more definite statements about the

behaviour of g+(Q) (eqn. (8)) as ,- . This can only be done by

imposing further restrictions on the behaviour of cT+(uj) for large ws.

First consider g(x) given by eqn(?). It m1ght be thought that,

provided

f(y) dy

converges, then -9-1

g(x)- -- f(y) dy, as x-i '1tv (9)
TRx f

This is not true. To ensure (9) further conditions must be imposed on
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f(y). Sufficient conditions are (16)

Ui) fjf(y) I dy and -J f(y) dy converge

(ii) Given C - 0, there exists a V such that

, y - x t•,)•

for all y r xp V

(16) We are indebted to Messrs D. Atkinson, P.Menotti, G.C.Oades and

L.L.J.Vick for this statement of sufficient conditions.

These conditions are satisfied by simple forms of f(y), such as f(y)v y4-&j•)

as y --> oo where rl> 0, but they are not satisfied by eertain

oscillatory forms of f(y).

In fact eqn(9) is not particularly useful here, and we use

several other theorems to find the behaviour of g(x) as x.-*Ot.o Now

we quote a standard theorem on the limiting form cf a principal value

integral with a finite range of integration (we also need this theorem

in another connection below - cf 0 4(iii)).

Theorem B(17) Let
1

g(x) = -x dy

-1

where f(y) is in L (-1.1) (p > 1), and suppose that near y = 1

f(y) = A (I-y) - + tý (y), (0•a4.•) where A is a constant.

Also t(y = 1) = 0, and near y = 1, 'ý (y) obeys uniformly the Lipschitz

(or HUlder) condition

I 4(y) - Y/(yo) < K Iy-yo0

where K and E are positive constants. Then as x -01,

g(x) -o -A cot(na)(1-x)"a +(0(1), if OC a4 1;

and

g(x) -. j Ath(1-x) , if a = 0.

(17) F.G.Tricomi, Integral Equations, Interscience N.Y. (1957) Chap.4.
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See also N.I. Muskheliakvili, Singular Integral Equations, Nordhoff,

Groningen (1953) Chap. 4 .

Transforming one end point to infinity we have a theorem on

the asymptotic behaviour of eqn.(7).

Theorem C Suppose that as y -.. ,
-y1+ a,

f (y) Ay-1+. + F(y) CoO &a• 1)

where A is a constant and yF(y)--. 0 as y . Also we require(1 8 )

that for any large y and yo
£

/yF(y) - y F(yo)j < K -

where K and E are positive constants. Then as x - K

(18) This is an adaptation of the H8lder condition which is in general

required in some form to set bounds on a principal value integral.

(19) See also H.Lehmann, Hamburg University Preprint (1961) on the

Asymptotic Behaviour of Dispersion Relations.

g(x) -A cot(na) x-l+a + B(x)/x , if 0e a < 1,

and g(x) A tx + B(x) if a = O,
n• x x

where B(x) is a bounded function19)

The special case of a = Y2 should be emphasized; it gives g(x)-*B(x)/x

as x -* (where B(x) is bounded). Also note that in this case (as for

all a > 0) *ff(y) dy does not exist.

Application to the D+ (biL ) Dispersion Relations

We apply Theorem C to the integral in eqn (6) (or eqn(8)). We

assume that o+( ) and o_(w) tend to limiting values C+ and a-

as W -* o . Further, the H8lder condition requires that these limits

are approached in such a way that

Ihe+(re) - aec-nants, K (te)

where K and 8 are some positive constants, and 4#l, w0 take all large
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valuis. (We shall return shortly to discuss these limitations on

6 (W) ). Now eqn (6) is seen to have the asymptotic form(20)

D 2L ) 1 -•) LL a s 'L' a s 0L " ' (1 1)
471

provided cU+ - c:_ 0. This result will be used in the derivation

of Pomeranchuk's Theorem in ý 2(iii) below.

(20) It is easy to show 4y standard methods that
rO ( u±(I )

~ + ~ --itT ( t" W "L as tWL- .fl q ' k)' + 4dL

Several comments should be made here. First, suppose that we

are not allowed to assume that 0" (ca ) tend to limits as W --> o ,

but merely assume that 40r+( W ) are bounded as W-> ao . Then Theorem A

applied to eqn( 8 ) enables us to infer that g+()L) --) 0 as w L -- *"
(21)

It follows that the last term on the right of eqn(6) cannot increase
2

as fast as QjL when w L ..P ">O.

(21) The same result is true under the much weaker condition that

•+(Y ) 00 -J1+10 as w -- o where 0 . This follows

from Theorem A and the method indicated in footnote (14).

Next, we look at the condition (10) which was required in

applying Theorem C. Letting o -.j co we see that (10) requires that

should approach the limit ar, at least as fast as some

fractional) power law, that is (writing (r for (.vr or c•- Cr(W )- 0100)
A\ 0 (22) + -),O)).i@)

,i K (') > 0), as w-I ,(22) However this is not sufficient.

We actually require that

(22) Thus (10) is not satisfied if ( ) approaches C ) as slowly as
( )-.

K A + as W -to (12)

wherer (&u) - 0 as tu -# 0 aed ((AA) itself obeys (10) for

some 1- 0.
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The estimates of high energy behaviour which are derived

from the analogy with Regge poles are referred to in J2(iii) below.

They suggest that(23)

(23) See for example B.M. Udgaonkar. Phys.Rev.Letters 8, 142(1962)

K K2 Kn
r(w) -!c>) =__ -, - + + " - , as c-. o< (13)

w~1 id'L2 (OI I

where K1 , . . . Kn are constants, and 1', . . . In are positive

constants which are less than unity. This high energy behaviour satisfied

condition (10). In what follows we shall in general assume that

+(du ) do obey etn (10).

Behaviour of D+ (WL)) as t&jL-* )go

If the n-N interaction has a finite range R, then assuming

that little scattering occurs for angular momentum values • > qc.m.R

it follows (as in 2(vi)) below) that D+( WL)/WL is bounded WL.tVCo

This is the final step which establishes The validity of the dispersion

relations (6). The additive polynomial cannot contain a term in WL2
because, as we have just seen, provided 0+(W) are bounded as tu-i ,

no other term in (6) can increase as fast-as wL2.

In fact there is good evidence for the much stronger

statement D+(14IL)/tJL -o 0, as w L-*00 . Cool, Piccioni and Clarke(2 4 )

found that the forward c.m. scattering amplitude f- (4)L O) for 0)-p

(24) R.Cool, O.Piccioni and D. Clarke. Phys.Rev. 103,(1956), p.1O8 2

scattering obeyed the relation I Ref-(.)L, 0) 01 4S_ Im f( (,L, 0)1

in the range 1 to 1.5 BeV. The result comes from comparing the

differential cross section extrapolated to the forward direction,

d ( = 0) = f (WL; 0) 12 with the total cross-section C( WL) by
dfl "

using the optical theorem (1.37).

An experiment by Thomas(25) on wC-p scattering at 5.17 BeV

gives d-r(, =0) --29.8 mb/ster. If we assume that Ref.(w LO) = 0
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this gives 0C(5.17 BeV) = (29.1! 3)mb. which is in good agreement with

the direct measurements of C( W L) (cf Fig.2). There is also experimentalL (26)
evidence at higher energies that Re f_( 0)L, 0) is small.

(25) R.G.Thomas, Phys.Rev. 120 (1960) 1015

(26) See Proceedings of 1962 Conference on High Energy Physics, CERN,
for details.

We shall assume that

Re fOL0
- -p0, as L)-A.0

I IM f-(4LjO) L'0) (14)

Assuming also that O'(£L L) is bounded as WL -3 00 , the optical theorem

(1.38) now gives

D(90L)/wL --> 0, as IjL-a o0 , (15)

(where D " Ref_(tJL, 0)). The data on n+ - p differential cross-

sections is not at present so good, and we cannot directly deduce from

experiment the relation analogous to (15).27) However, it is shown in

j 2(iv) below (eqn.(26))that, from (15) and some general properties of

the dispersion relations (6), we can deduce

D+ (eL)/WL --:0 0, as -L " Coo. (16)

Further evidence in favour of (15) and (16) comes from

evaluating the dispersion relations (6) at high energies. Our discussion

(27) See however reference (26)

Sassuption(2.8)
above showed that the relations (6) are valid under very wide assumptions

about the high energy behaviour of Ge+(w ), and from now on we take them

to be true. Inserting the known values of the scattering lengths and

the cross sections a+(w. ) in (6), the amplitudes D+(•L) have been
eautd(29) to -

L) aebe

evaluated(29 up to about WL = 2.5 BeV. The results indicate that

(28) Namely that Cf+(c) do not increase faster than J-"where rv, 0,

and that I D+(%b)/- j do not increase as fast as W
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D+(&LL) are almost constant above 1.8 BeV.

(29) See, for example, J.W.Cronin, Phys.Rev. 118, 824 (1960)

(iii) High Energy Consequences of the Forward Dispersion Relations

Pomeranchuk's Theorem We have seen that the dispersion relations (6)

give the asymptotic form (11) for D (w ) provided +(LJ) have limiting

values t'+ as U) 00 , and provided C'+(W ) approach these limiting

values so-that condition (10) is satisfieg. Now comparing (11) with (15)

and (16) we must have

Cr+ =u- (17)

This important result is Pomeranchuk's Theorem(30). Towards the end of

this section we shall derive it under less restrictive assumptions about

(30) I.Ia Pomeranchuk, Soviet Phys.JETP 34, (7) 499 (1958)

In Fig. 2. we show the experimental data on O+(W) and C()

in the range 2 BeV to 20 BeV. Two facts appear to be established:

(a) the cross-sections a+(w ) and d_(w) have not reached their limiting

values at the highest energies yet attained, (b) the difference ( (•,)-e+(a) )

is decreasing very slowly with increasing ij in the energy range coasidered,

and it is not zero at the highest energy attained.

The Rate of Decrease of ( • (i) - C )

We can try to use physical arguments to determine how fast

( O (a) - =O(w) ) goes to zero. First, there are the early arguments" J", (31)
of Pomeranchuk based on charge exchange processes. These state that

above some energy iwo (which is of the order of a few BeV.) the phase

spacefor the charge exchange process n" + p # no + n is much smaller

(31) I.Ia. Pomeranchuk, Soviet Physics, J.E.T.P. 3 306, 307 (1956)
also S.Z.Belenki, Soviet Physics, J.E.T.P. 6, 960 (1958)

than the phase space for all other inelastic processes originating from
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n" + p. Therefcre, for u ga)o , the total cross-section for

n" + p no ; n within the forward diffraction cone, is a rapidly

decreasing fraction of the total cross-section Or (w ). Also the cross-

section for elastic scattering n" + p --_ n- + p within the forward

diffraction cone is an appreciable fraction of (T (to). Thus (in the

notation of (1.14) and (1.23) we expect

I f(')(q,=0) ) 21/ I f(+)(q, 8 =0)/ -, 0, as q -oo , (18)

In particular by (15) (16) and the optical theorem, we expect O' (4))-

IV+(w ) to fall to zero rapidly for w>,u.
The Regge Pole Estimates

As we have seen, the rate of decrease of /f(to)- o+('o)(
appears to be slower than this crude model would indicate. It has been

suggested(32) that this is due to a considerable amount of coherence in

the exchange processes involved in high energy forward scattering, and

that the difference (L_(T ) - O(W )) is due to such effects associated

with thep -meson isobar (T = 1, J=1, 2n isobar). If, further, the

Regge pole meth:id is used, the rate of decrease of (r (w)

can be estimated. From eqns.(35) and (36) of ref (33) we can find

the effect of the exchange of a mesonic isobar of angular momentum J

(32) G.F.Chew and S.C.Frautschi, Phys.Rev.Letters 7, 394 (1961) and

8, 41(1962), B.M.Udgaonkar Phys.Rev.Letters, 8, 142,(1962). We are

indebted to Dr. Udgaonkar for information about his results before they

were published.

(33) J. Hamilton and T.D.Spearman, Annals of Phys. 12, 172 (1961)

upon the amplitudes A( y ,t), B( ,t) 'or small values of t and large V
J J1

We have I A(y , t) / '- £J, /B( Y ,t)l -, Y J. If the mesonic isobar

is to be treated as a Regge pole, we replace its spin J in these relations

by a(t) where 0 4 ý(t) e J. +Thus, using eqn(42) below, the differential

cross-section for n- + p --_pn + p small angle scattering at high

energy obeys

d C (2a(t)-1)
dJ-,A as '-A oo (19)
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where t ( 0 0) is small, and a(t) is a slowly varying function of t.

Note that V = 4L + t/4M and dil is the c.m. solid angle. By the

optical theorem this gives the total cross-sections.

CT -.0 &1 Co)- 1) a :lU
tot L L (20)

It is proposed(32) that the high energy behaviour of the

cross-sections is given by the vacuum pole which has a(o) = 1, plus other

poles each having 0 < a(O) < 1, so that the cross-sections are of the

form shown in eqn (13) (say, at energies above 2 BeV). The difference

C. 0( ) - +(w) is given primarily by the /o isobar pole, so that
•F_ •)- •+(d) "'(W -(1-a' (0)) (1

Cr~w (23)1L

The experimental results (cf. Fig.2) suggest (23) that a (o) -4 0.5.
P

Evidence on ( cr(w) - 0+(wo) ) from the Forward Dispersion Relations

Since the Regge Pole considerations are as yet not firmly

established, while taking their consequences as valuable indications,

we shall examine what information can be obtained about (e_(ia)- ( +(WL) )

from the forward dispersion relations, making as few assumptions as possible.

Following Amati et al(34) we write one of eqns(6) in the form(35)

S.+ 21"

* /(" •l ~ •f •--2' . +.d;:'; # iw I ~')( (22)

,Ay.

(34) D.Amati, M. Fiertz and V.Glaser, Phys.Rev.Lutters, 4, 59 (1960)

(35) This is done in order to make use of Tauberian theorems for

Stieltjes integrals. We could equally well replace Or+( W' ) by 0(4'

in the first integral and in the subsequent arguments.

If or+(Q ) approaches the limiting value •+ as i#) o* oo in such

a way that Theorem C is applicable(36) to the first integral on the right
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of (22), then this integral behaves likek)L'2 as 104ý-*me

Therefore, using eqn(16)

di I ( u 0 -Z*' K , as £W -., a
UL f qt' + AO L (23)

(36) Change variables by x = a° , and get the case cz=W of Theorem C.

Here the condition on 0+'( W ) is much more restrictive than eqn (10).

where K is a constant. By'a standard theorem(37) it follows from (23)

that

Go' a'(e." ) =K 2)q ((-24)

(37) G.h.Hardy and D.E.Littlewood, Proc.Lond.Maths.Soc. 30. p.23 (1930)

(Theorem 5)

We must assume either that G_(1r ) - 0+(iu ) ( - K'!/, , or that

+(t)- .( ) , - K'/€@ , for all sufficiently large to . K' is

some positive constant.

The importance of this result is that the integral in (24)

must converge, and this provides some information about how fast cr(0)
V.W )- + (t ) must go to zero. For example, if 6(to )

decreases monotomically, then &If(W ) must go to zero faster(38)than

1 o 4 )-I Unfortunately the above derivation is open to some

(31) If (24) is true, then f )' 0 asAy-e ,to q1 • )- s••0

Therefore (r ( ).(o A &-- 0 as 9v-P 0*-

criticism. In particular Theorem C is only applicable to the first

integral on the right of (22) if U1+(w) approaches ir faster than

• "- ( > 0). We now outline a method which avoids this difficulty.

Consider the first integral on the right of (22). We apply to

it the following useful theorem.
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Theorem D(39) Let

(Y) = p J -71L f(xL dx

and suppose that
99

i) f f(x) dx exists,

"1 x

(ii) f(x).4nx -;. 0 as x-•oo,

(iii) lrf'(X)/ M (where M is a constant)

then

Y 0 as y -> o

(39) The proof is given in appendix A. Note that f(x)can be

positive, negative or oscillatory.

Now put x = 3 
,y and f(x) = a•.( ) -0-+

in the first integral on the right of (22). The couditions for Theorem

D become -*

(i) f L , dio' exists,

(ii) (or 0) 0) g..) 0 as w-* ,

(iii) /0'(o )I ' M so

Then(
4 0)

Spf dt,,_..' • +•~ ''

WL - )2 0 0 as UwL--0

In particular we note that the conditions Wi) and (ii) are satisfied

if 0+(W ) -- g'+ as fast as, or faster than (4 t'W )-2. It follows

as before that the integral (24) exists and (provided Or(i, )-0.O as W - )

we have Pomeranchuk's Theorem (17). This proof of (17) avoids the

rather restrictive conditions (10).

(40) By explicit calculation or by Theorem C,

00

OL Pf d- wl wo 0 as 10~
f q1 tEdl &1, 2 L
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We can do even better if we assume that (0 (ii) - Cr)

decreases (or increases) steadily to zero. For example 4l) with

f(x) = (kx) 1, or f(x)= (4 x)-1 we still have y• (y)->O as y-40,

and eqns (17) and (24) again follow. In all of this we have assumed that

(41) See appendix A for details.

the cross-sections +(W ) have limiting values cr (which may be zero)

as w-*0. Various pathological types of behaviour of +(W) as tc-> 00
+

have been discussed in the literature. For example, if

C+(W )- 4 o t+ L e sin( cu 2) as W-* 00, where 0 and are constants

(and O < ), then eqn (23) is not true, and the integral (24) need

not exist(42)2

(42) S.Weinterg. Phys.Rev. 124. p.204 9 (1961) has proved that the integral

(24) exists if D+(i)/tu and a(w) are bounded as W -gb0 , provided

that ( •(ia) - -ry+(tvi) ) does not change sign an infinite number of times.

Our Theorem D catches many of the cases of oscillatory behaviour of

(0•(eaJ) - c+(e ) ) which Weinberg's result misses.

The theorems we have just proved and quoted cover a wide

variety of physically reasonable behaviour of LT ((U). We shall in what

follows assume that Pomeranchuk's Theorem (17) is true, and that the

integral (24) exists.

(iv) The Sum Rule

Dividing eqns.(6) by UL and adding, we get for q large,

Substituting x = a/1,y = we can apply Theorem D to the integral

on the right under the conditions on e+(c ) and r.(W ) just discussed

in the previous section. Then the last term on the right tends to zero

as L -0 , so we have
~~D+(g•jL) + D (&.JL) ._

+• L L 0 as 4)L-0 (26)

-, +
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Therefore eqn (15) implies eqn(16) and vice versa.

Now if we divide either of eqns(6) by WL, and let 4)L-* 0

we get the sum rule(43)

41' +( I '1j- ,, (27)

(43) M.L.Goldberger, H. Miyazawa and R.Oehme. Phys.Rev. 99.(1955) 986

The existence of this sum rule depends on (15) and (16) and

the convergence of the integral (24). It gives a useful relation

between the coupling constant f2, the s-wave scattering lengths al, a3
and the total cross sections 0+( W ). UnfortunatAy the slow convergence

of the integral means that in practice this relation will not give

results of high precision. Using the values( 4 4 ) a = o.178, a = -0.087
and the data on C+(A. ) available in 1960, Spearman's calculation( 4 5)

gives f2 = 0.082:0:008. Later information( 4 6 ) on 0+(W), and in

particular the values of ( 3 (Aj) - LI(u.) ) above 2"BeV, will reduce

the mean value of f2 by around (47) 03. The good agreement, within the

errors, of this value of f2 with the values o'tained by other methods inJ4

below provides reasonably strong experimental evidence in favour of the

sum rule.

(44) J. Hamilton and W.S.Woolcock, Phys.Rev. 118, 291 (1960)

(45) T.D.Spearman, Nuclear Physics, 16, 402 (1960)

(46) G.von Dardel et al. Phys.Rev. Letters, 8, 172 (1962)

(47) J.Hamilton. Proc. International Conference on Very High Energy

Physics,(CERN) (1961) p.151.

(v) An Unsubtracted Dispersion Relation

The analysis of j I and f2(i) shows that, if it existed,

an unsubtracted dispersion relation for (fL.(W)_ 0) - fL+(iL) 0))
would have the form (48)

(48) fL+ and fL- are the lab. forward scattering amplitudes for

n+ p and n- + p respectively.
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S(28)

where C is an arbitrary additive constant (no other term of the additive

polynomial can appear). The existence of the integral (24) ensures that

the integral in (28) converges. We shall show that C = 0. For this

purpose we use(49):

Theorem E

Let bo
1g(y) = p f(x) dx:

and suppose

Ui) f(x) dx exists,
1

(ii) f(x).40.x-. ') as x-,

(iii) If'(x) / - M (a constant),

then g(y)-+- 0 as y -- o

(49) We are indebted to Professor E.C.Titchmarsh for supplying this

theorem.

Substituting x = y y = ouL f(x) W= O(A') (1))

we see that under a wide variety of types of behaviour of ( Cr(i,) -

Y+(ta') ) the integral in (28) vanishes as toL-c. Therefore by

(15) and (16) we must put C = 0, and the unsubtracted dispersion relation

is established.

Substituting WL = in (28) we now get the sum rule (27).4:
Thus (28) with (C=O) and (27) are consmtant with each other. Eqn.(18)

and similar relations are )f value in various calculations given below.

(vi) Subtractions for the A(W and B(W dispersion relations

The partial wave amplitudes f of eq.(1.28) obey the

inequality

1 (29)
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where q is the c.m. momentum. With a finite range of interaction R,

we expect scattering quickly to become negligible as the angular momentum

* increases above the value L= R.q. Thus the forward c.m. amplitude

obeys L

ff(q,0) I QA + 1) /q = qR (30)

Thus we expect Jf(q,O)1 /q and IfL(qL ,0)I /qL

to be bounded as q -> ao

Finn(co) and Singh and Udgaonkar(I have extended this

argument to obtain bounds for A( Y,t), B(C ,t) as

(30) A.C.Finn. Phys.Rev. 119, 1786 (1960); (ft ) V. Singh & B.M.

Udgaonkar, Phys.Rev. 123, 1487 (1961)

From (1.26) we get

1 W+M W-MSA = + -M 1 E- 2

(31)
1 B 1

779 E+ M + E -M 2

Using (1.30) to express f1 and f 2 in partial wave amplitudes, and letting

q-*•e (q is always the c.m. momentum) we find that for fixed t (t-f.0)

IA÷E( f.'L(q) - L' (q)) (Pji 1IL) -,.(•) )
4=0 t+(32)

1 BE2 f( f,,+q) + ý4- Pj, (ii)B+• I q 4ý j+(40'

Now IPI(N) I ,A4t,1) if -1 C +1

and th, .quality holds at 4 = 1. Also

P• ()-P'j ) = (4 ")• (O) + (1-4) P (it) (33)

The summations in (32) are terminated at L = R~q, and using

(29) we get, for -1 f, 1,

A E (&+ 1 )20.., = 2R3q
403q 3
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Thus for fixed tg 0

JA( Ut)I/y 4 K as V-*0•o (34)

where K is a constant. Here we have used

Y X Lz L - 2q 2/M as Y-- oo (t fixed)

which follows from (1.4X1.5) and (1.19).

We find limits for jB (Y , t)0 for fixed t 0 by using

(33). As Y-# ov , 441 because (-t) = 2q 2(1-1). Also
(-t) 1 (-t) (-t)

(1-119•I) p -' • -1) -2 L,(I-1)-- (-T-, RP-
22 242

2q q (*1~

Hence as Y-# to the term (I+l)Pt(vt) predominates on the right

of (33), and by (32)

L 

2
1 ,(v t) z. (R+) • L

97t 2q q 2q2 2

Thus for fixed t j 0

IB( ,t)I • K' as Y-*e (35)

where K' is a constant.

Now we examine the consequence for the dispersion relations

(0.16) and (1.17). First consider A(+). If Im A(+)( V10-1 m as v.* o,

the dispersion integral does not converge, and we require one subtraction

giving

ReA(+) (+)(Y o2)P d' ImA(+)("t) (36)

f4+t /4 ',) ' 2
0where y 0 is a real constant. The dispersion integral now converges,

and the second term on the right of (36) cannot increase as fast as V2

when Y -* oo . We examine whether an additive polynomial is required.

Because A(+)( Y,t) is an even function of Y (by (1.13)), such a polynomial

would contain even powers of Y only. Since Re A(+)(I,t)/ 2-.0 0 as

Y -t 00 , the constant Re A(+)()o,t) on the right of (36) is the
only term required. We notice that the value of Re A(+)(•o,t)

must be known before we can make use of the A+ dispersion relation.

The B+ relation is satisfactory as it stands in (1.17)

Because B(+)(Y ,t) is bounded as P--oe o , the last term on the right

of (1.17) converges; also by Theorem A of j 2(11) it cannot increase as
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fast as Y when W-1 *6. Any additive polynomial here has to be an

odd function of V , so even the lowest term 4,M cannot occur.

(vii) Subtractions for the A(-) and B (-)dispersion relations(52)

Next consider the A(-) relation. Our considerations above

show that A A()( V ,t)I /V is bounded as y-, ou . Therefore one

subtraction may be necessary in (1.16). This gives

(52) This was first discussed by A.C.Finn, loc.cit.

1 (.-) ~ ( 2-)PfW ImA (-) O t)
ReA (v,t)= -1 ReA ) d .' IA 2 $1 2V Io (°t) V••4 ( -Y2 (XyZ t2 (37)

where 0 is the subtraction position and t is fixed. The integral in (37)

converges, and by Theorem A of ý 2(ii) the last term on the right of (37)

certainly cannot increase as fast as V2 when Y-* oo . Since the additive

polynomial in (37) must be an even function of Y , only the constant term

can occur. This is in fact Re A(-)( Y- t)/Xo.

Having established the dispersion relation (37) we now examine

some of its consequences. By (34) A(')(0,t)/y is bounded as Y-. -) .

Suppose that Im A(-)(v,t)/¥ tends to a limit A (-) (t) as V-o oo , and suppose

further that, as V.# ;>., ImA(-)(v,t)/b obeys a condition like eqn(1O),

so that Theorem C of jf2(ii) applies to the integral in (37).

Substituting y = ,2 , x = J2, f(y) = Im A(-) (',t)/V.'3 we see that

the last term on the right of (37) behaves like () A (t)l 4f

as - e . Since Re A (J)y,t)/ is bounded, this is impossible,

and we must have A(')(t) = 0. Now, under the same conditions, the integral
00 2fdIV ImA (.IVIt)/.V converges, and we can write down an unsubtracted

dispersion relation (cf (1.16))

-) 2 vt (38)_____Re. A (i't) = 'a-(t)+ - Pd• ' Im A(')(v t) (8)
A' 

+ t /14M

where 0(.'(t) is an arbitrary constant to be determined (we shall see

below in f2(ix) that 4v('(t) = 0)
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The difficulty about this argument is that although

ImA(')(V',t)/y I is bounded as Y.*oo , it need not tend to a limit

(or if it does, it need not do so sufficiently quickly). We therefore

look for alternative justification for the relation (38). This comes

either from Pomeranchuk's argument(31) on charge exchange scattering,

or the Regge pole argument, both of which were discussed in f2(iii) above.

Pomeranchuk's argument implies that I A(-)( Y ,t) I / I A(+)( Y ,t)0 and

I B(-)( Y,t) / IB(+)(V,' ,t)j tend to zero steadily as JL increases

beyond (0 (which is a few BeV), for small t 4 0. The Regge pole

argument suggests that these ratios fall off like Y (t)) where

0 < (t) < 1, and for small t(t < 0), av*(t) is not much

different from 0.5. In either case we have reasonably strong support

for the convergence of the integral in (38). We therefore assume

that the unsubtracted relation (38) is valid, and we shall use it below

for numerical calculations.

The situation for B(-)(y , t) is much the same as the

A(-) ( ,t) case. We infer by the same general arguments that

Im BW ('V ,t) -4 0 as V -), oo , and that we can use the unsubtracted

dispersion relation.

2
ReBC(•,) =t) () + 2 2 p dye ?'ImB-)( (9)

b WVB2_2) J A1P2. Y2
11+t /4M (39)

Here bw-(t) is an arbitrary constant to be determined (we show in f2(ix)

that b(-(t) = 0.)
It should be emphasized th t in view of theimportance of

the dispersion relations (38) and (39) (and for other general reasons)

it would be valuable to check the assumptions which we have made about the

rate of decrease of A(')(,t) and B(')(,t) as Y-# . It is very

desirable to have an experimental investigation of the charge exchange

cross-section n" + p - n 0 + n over the diffraction peak region of angles

at energies up to 20 BeV.
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(viii) High Energy Behaviour of AW(+)Yt) and B(+)(Y' t)

In order to evaluate dispersion integrals for these functions

it is necessary to know more about high energy behaviour of ImA(+) and

Im B(+) than is given by the bounds in (34) and (35).

First, we see from (32) and (33) that for large )' and

fixed t(tg 0), each term in the series for ImB(+)(V,t) is non-negative(53).

We would therefore expect Im B( W)(,t) to approach the bound (35), and we

would not expect Im B(+)( V ,t) to fall to zero as Y-> cO . The individual

(53) This is because Im f(q)40

terms in the series (32) for Im A +( Y ,t) can be positive or negative, and

we can make no simple statement about Im A(+)(Y ,t) except to note that it
can be strongly affected by any appreciable differtnee between the amplitudes

f and the amplitudes f i.e., Im A (.+,t) will be strongly influenced by
any force of spin-orbital type.

Consider the no-flip amplitude V(@) (cf (1.28)) near the

forward direction. By (1.23)and (1.26), provided E > (-t)/4M we have

fl + Cos @f2- =• M A(JVt) + E--W B( Jvt)(0

where E = Vq 2  + W = E + , and q is the c.m. momentum.

The helicity reversal amplitude (cf eqn.(1.23a)) is given by

flEf A(it) + 1 E) B (v,t) (41)

ForY large we have E - q, W * 2q, -w• 2q 2/M,
and 1a f() f + CosQf - 1 " M )"Y2 A( ,t) + y B( ,t)/

1 2 TV I{C~) Bi~~
f "1 f2 -+ f1 {A(vt) + M B (Y ,t)} (42)

Now there appear to be two distinct types of high energ

behaviour according to whether Im A(+)( Y,t) does or does not reachthe

unitary limit given by (34)
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The Ambiguity in Im A(+) as L-0, 0

Let Im A W ( y,t) - CY and Im B(+ (M,t)-* C' as Y-Ooo

where C and C' are constants, and -t(. O)is small. Then the helicity

amplitudes M++ (J•,t) and M_+ (,t) given by (1.23a) have the asymptotic

behaviour

Im M+ ,t), 1( C + C')(8106 b1) as I-* 00

c c t )1 )61 (43)
lI M.(Y',t)/, 8, M Y Isin "/21 = 87 -3) Y

(by the optical theorem we require (C + C') , 0). On the other hand if

Im A(W+)(,t)-* O and Im B( W(y,t) --r C' as k-* so , we have(54)

Im M+(Y, t) " 1 C-(

J as y -* (44)

I I m M _+ ( Y , t ) / I ra M + + k , t ) - '- 0

(54) The polarization of the recoil proton in the lab. system for high

energy small angle scattering is

( Mý-- ) ' Im IAX(.,t) B(y.,t)j / A(Y,t) +vB( Y, t) where p 2 is

the momentum of the recoiling proton. Because of eqns (48) below this

is expected to be undetectable even in the case Im A W ,t) ,0 CY .

The behaviour given by eqn (44) is possible because there

could be cancellations between the various partial wave amplitndes in

Im A( (M,t) (eqn.(32)). The Regge Pole method does not resolve this

ambiguity(55). In his discussion5 6 )- of high energy elastic scattering

Lovelace assumes that Im A +)(#,t) is dominant for large Y , but it is

(55) This method gives IA(W (p,t) I ,., yq(t), ) B(+)( Y ,t)I-y'M-l)

as 1/4 ofor -t > 0 and small. Here ci(O) = 1 and a'(t) is positive

and small. However cancellations in A C1 ,t) are not excluded without

further assumptions, and A( W)(,,t) may not reach the unitary limit

given by m(O) = 1. In the notation of S.C.Frautschi, M.Gell-Mann and
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F.Zachariesen (Phys.Rev. 126, 2204 (1962)) A(+)(Y , t) does not

reach the unitary limit if (0) =(2) (0), whereW TPNN =MEPN

SPNN(0) (i = 1,2) are the constants coupling the vacuum pole to

the %-N system. In this case the spin flip amplitude does not

reach the unitary limit.

(56) C.Lovelace, Nuovo Cim,nto, 25, 730 (1962)

clear that his analysis of the experimental differential cross-sections

could bi carried out equally well by assuming that Im B +)(Y, t) is dominant.

Woolcock(3) in using the dispersion relations (1.17) and (36)

assumed that the high energy behaviour of A(+)( Y,t) and B(+)(y,t) is

given by th, partially opaque optical disc model. This model assumes

f2(g) = 0. (i.e., the spin flip amplitude g(G) is zero).

By (1.26) this gives

1 +)W + n 1C+ 11 A(+)( t) = + f(g), •B()v ,t) f(Q) (45)

where f(G) is the no-flip amplitude as calculated from the optical model.

This should give a reasonably good approximation for ImB (+ ,t)

in the forward direction and very close to it, for Y in the range 2 BeV -

20 BeV. This is because Im B(+)(y ,t) is the sum of partial wave absorptive

parts, and the finer details, such as th. differences between Im f
:(1 and

Im f should not matter much provided (-t) is small. Also, the optical

model gives a reasonably good fit to the experimental data very close to

the forward direction. There are some corrections due to the narrowing

of the diffraction peak with increasing ywhich is expected on the Regge

pole hypothesis(57). In our account of the calculationb, which is given

in il 4 and 5 below, these corrections are included where it is necessary.

(57) This narrowing has been observed in N-N scattering in the region

2 BeV - 20 BeV - See the report of G.Cocconi in Proceedings of the

International Conference on High Energy Physics (CERN, 1962).
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They are not large (cf • 4(v) for an account of how the effect of the

narrowing on the 8 A (,t) and jt) dispersion relations

is estimated). (+)

Clearly eqn (45) may only give a rough estimate of Im A (+(,t)

even at 2 BeV. On the other hand the integral in the subtracted dispersion

relation (36) converges well at high energies and the effect of errors in

Im A+(Y ,t) at, and above, 2 BeV is much reduced. There are other

factors, such as the errors in the subtraction term (of j 5(iii)(b)), and

the Legendre series convergence problem (cf J4 3(v), 5(iii), 5(iv))

which make the dispersion relations for A (+;( ,t) and its derivati of

much less value than the dispersion relations for the other scattering

amplitudes. +

(ix) Re A YMt) and Re-B(+)( .t) at High Energies

If, for high energy forward scattering, we accept the optical

model in the form given by eqn (45) we get
W+ -1/ (+)

1 ReA (Y ,0) Y '-Re f (q,O) (46)
W as Y 4 00 46

ReB(+)( ),O) Y-"e f+(q,C)
where Ref(+)(q,O) is the real part of the (c.m. system) forward scattering

amplitude. From eqns(15) (16) and the relation pz _2q 2/M we get

P Re W V ,O) 0 as V -* 00 (47)
Re B() 0 --*

The same result is given by the Regge pole treatment in the

asymptotic high energy region (58). The same result should also be true

when t is small, as the variation is going from A (( ,O)to A(y,t),

(58) See the explicit forms for A(+) and B( given by S.C.Frautschi et al,

Phys.Rev. 126, 2204 (1962)

(t < 0), should be smooth, and we are moving further away from the

important strip of the double spectral region. Thus we have

-Re A(+)(y,t) -a 0 for small

Re B'+) (Yt) -4 0 J negative t
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The arguments given in §2(vii) above show that as 9-,

the A(-)( Yt) and B (-') ,t) amplitudes tend to zero faster than the

A(+( t) and B(+)(Yt) amplitudes. Tis will also be true for the

real parts of these amplitudes. Thus (48) hold also for the (-)

amplitudes. If we accept the Regge pole arguments 1 Re A(-( ,t)

and Re B'(y •,t) are directly seen(59) to obey (48). It follows

that the additive constants
a)(t) and b(-)(t) in the unsubtracted dispersion

relations (38) and (39) are to be equated to zero.

(59) Use footnote (55) and replace a(t) by a (t)10 W = (for t small)
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J3. Convergence of Legendre Polynomial Expansions

In this chapter we examind the rate of convergence of the

partial wave expansions of n-N scattering amplitudes. This is done by

using either Lehmann's Theorems or the Mandelstam representation. These

give domains of convergence of the partial wave expansions, and enable us

to estimate the rate of convergence. The results are applied to assess

the errors in the practical evaluation of the absorptive parts of scattering

amplitudes, and to find the limitations of the CGIM method for predicting

partial wave amplitudes.

(i) Lehmann's Theorems

The basic theorems on the expansion of a scattering
(6o)amplitude in a Legendre series are due to Lehmann . He considers the

amplitude T(W, cos 8) for the scattering of pious on scalar nucleons. Here

W, q, are the total energy, pion momentum and scattering angle in the c.m.

system.

(60) H. Lehmann, Nuovo Cimento 10, 579 (1958)

The expansion can be written

T(W, cos 9) - 2 _ TO (2. +1)CC(W) P9 (cos 9) M1)
R q 0

where C4 (W) are complex functions of W. It is convenient to consider the

Legendre expansions for Re T(W, cosa) and ImT(W,cos 9) which are obtained
from (1) on replacing C (W) on the right-hand side by Re Cg(W) and

IM C2 (W) rApectively. Now we examine what happens to these Legendre

expansions for Re T(W, cos 9) and Im T(W, cos 9) when W is kept in the

physical range W?(M + L), but cos 9 takes unphysical values such as

cos 9 > 1, or cos Q<- 1, or becomes complex. From general field theoretic

considerations plus microcausality(61) Lehmann proves the following two

theorems:

(61) Microcausality is the assumption that boson (fermion) field

operators commute (anti-commute) for space-time points whose separation

is space-like.



44.

Theorem 1 For physical values of W, Re T(W, cos @) is an analytic function

of coB 0, which is regular inside an ellipse in the complex coB 9-plane

centred on the origin with semi-axes along the real and imaginary axes

having lengths x° and (x2 - 1) Y respectively. Here
80 3(1 + 2M) 32

x 0(W) = [1 + q2(- M_24}) (2)

The Legendre expansion of Re T(W,cos @) converges uniformly inside this

ellipse, and

SIRe Ct (W)I EX + 2 x 0 (3)

(In Appendix B we give an analysis of the convergence of Legendre series

which shows how relations of these forms can arise).

Theorem 2 For physical values of W, Im T(W, cos 9) is an analytic

function of cos @ which is regular inside a larger ellipse centred at

the origin with semi-axes along the real and imaginary axes having lengths

(2 x - 1) and 2 xo(x2 I ) Y respectively. The Legendre expansion

of Im T(W, cos 0) converges uniformly inside this ellipse, and

IT m o 0 (W) [xo + (X/ •2_ J -2(4

An indication of the meaning of (3) and (4) can be seen as follows.

Suppose that as Z400 (for fixed W) Im C0 (W) -w K/ 4 where K and 1

depend only on W. By (4)( 6 2) A<[x 0 + (x 02 1)..2, and since x. 1

we must have 4 1. Putting t = 1 - P where 9 > 0, it is easy to see

that ( tends to zero faster than exp( -47) as Z-+ o.

Comparison with a Simple Model

It is interesting to compare (3) and (4) with the results of

a simple model. Regard the nucleon as in distribution of matter in the

form of a disc centred at the origin whose axis is along the pion bean.

Let the density of matter at distance r from the axis be r(r). The

scattering amplitude for a pion of momentum q can be written in the

form (ef. eqns. (1.18) and (1.21))

M Tc
4n-w T = f(Q) = E (21 +1) f (q) P. (cos 0)

4=0
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By the optical theorem

(21+ 1) Im f

where i is the cross-section for the 4 th partial wave. The impact

parameter is r = A/q, and the tth partial component of the incident

wave sweeps through an amouat of matter approximately given by

2wr rp(r) where d r = 1/q . For fixed q, large values of,& give large

(62) Note that &,, IK = 1.

values of r. It is reasonable to suppose that the outer part of the

nucleon consists of one kind of matter (namely the pion cloud). We assume

that the partial cross-section ty cannot be greater than a fixed multiple
thof the amount of matter which the X partial wave sweeps through.

Therefore O :5 K'I 2nr. A r . ( Cr) where K' is a constant.

That is

Kj I K' 2( 4 q2) 10(A/q)

It is reasonable to assume that the density of matter in the

outer parts of the nucleon is given by p(r) = /oexp(-r/R) where R is

of the order of the Yukawa wavelength and 1o is a constant. Thus

(0O.4) Im fj (q) -, E'',ep(--/R
q

where K'' is a constant. Now for large

(Im f t (q))V expC-1/qR) (5)

Eqn. (5) is of the same general form as eqn.(4). Further

they have in common that the right-hand sides increase monotonically

towards unity as q increases. The actual dependence on q in the two cases

is different, as might be expected from the very approximate nature of the

model. From (5) we can also obtain a relation analogous to (3). By

unitarity

(Ref (q)) 2 + (Im f(q) 1 Im f, (q)

SlRe ft (q) j 4 Qt•(Im f (q))36

and by (5)

lRe 14 (q)l 4 16exp(- /2qR)(6
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The similarity to (3) is obvious. It should be noted that the right-

hand side of (6) is the square root of the right-hand side of (5).

The same relation holds between (3) and (4).

(ii) Applications of Lehmann's Theorems

Lehmann's mt~thod can be applied to the scattering of pions

by real (spin }M) nucleons, and the real and imaginary parts of the

scattering amplitudes are again found to be regular inside the ellipses

of Theorems 1 and 2 respectively. Further, the partial wave amplitudes

f and f which were introduced in eqn.(1.2 8 ) obey the inequalities

(3) and (4).
The first application(1) of Theorem 2 is to the dispersion++

relations (1.16) and (1.17) for A () ( ,t) and B ('(y ,t). In these

relations the integration is over y from IL + t/4M to o0 and the invariant

momentum transfer t = -2q 2(1 - cos 9) is kept fixed. When t 4 0 the bottom

end of the range of integration lies outside the. physical region. This can
2

be seen as follows. For q -2P , cos Q> I and we have forward scattering.
2

As q decreases from 00 , cos 9 decreases, i.e., the scattering angle 9
inrae.We 2 2

increases. When q = -t/4 we have cos 9 = -1. Values of q in the range

0 <. q2 : -t/4 correspond to - co 4 cos 9 Se -1 , and are therefore

outside the physical range. Zq2= 0 gives Y a JL + t/4M by (1.4)_]

Continuation of Im A - )((,,t) and Im B (+(v ,t) into the

unphysical region 0 f q2 < _t/ 4  can be carried out by means of the

Legendre expansion. For a typical amplitude we have, from (1)

Im T(W, coaQ) E (21+ 1) Im CA W tP• ( cos 0) (7)
7 q •= 0

Assuming that we know the phase shifts, the Ce (W) are determined in theS2 t t2
range 0 % q - . Now substitute cos = 1 + 2q in (?). Theorem

2 tells us that the series on the right of (7) converges provided

11 + t/2q I < 2xo (8)
0

It also tells us that, subject to (8), eqn.(7) gives the analytic

continuation of Im T(W, cos 0) from the physical region cos 01_4 1 for

any fixed q2 in the range 0+ 4 q2 t -t /4 This continuation gives

the correct values of Im A(-)( s ,t) and Im B ( yt) for 0 £ q2 1 "/4.
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From condition (8) it is easy to see that this continuation is possible

for

(0 ) -t $• L2 2 + IL 2 &, 1•2I
3 2M - -

We saw in 1 1(v) that this is also the range of values of t for

which the validity of the dispersion relations (1.16) and (1.17) has been

demonstrated mathematically.

Thus Theorem 2 completes the justification for using the
dispersion relations (1.16) and (1.17) for small negative values of t.

Below we report results obtained by using these relations and their

derivatives with respect to t at t = 0.

(iii) Expansion of the Absorptive Parts of A( V t).B( Y t) in Partial

Waves

In evaluating the dispersion relations (1.16), (1.17) for
Re A( ) ,t=O), Re B( Y,t=O) and th• derivative relations for

-)Re A (Re,t) B ROt) etc. it is necessary to have
good estimates of Im A(C Yo), Im B(yo), - Im A (y ,t)

SIm B(#,t)1 t=O to insert in the dispersion integrals. Using eqns
(2.31) and (1.30), these imaginary parts are expressed as infinite series

of terms containing Im f + where fA,+ (e = 0, 1, 2, ... ) are the partia:
wave n-N amplitudes. In general it is lo be expected that the integrals

in these dispersion relations are dominated by one or several of the well

known n-N resonances, but we should examine the convergence of these

partial wave expansions for Im A( Y ,o) etc. in order to estimate the

errors caused by ignoring partial waves with large , .

A rough measure of the rates of convergence is obtained as

follows. We assume that the partial wave expansions for Im A(Y ,o) and
Im B ( Yo) will have approximately the same rate of convergence as the

series E(p(W))X, and the partial wave expansions for L Im A(C ,t) t

and b Im B (v,t) t=O will have approximately the same rate of

convergence as iz + 1)(/1(W)) X where

0+ (9)

These estimates are based on using (1.30), (2.31) and the experimental
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values of the small phase shifts at 310 MeV which are discussed in(7. aide for th seie L,

3(F) below (67) Using the remainder of the series L

the fractional error in Im A( y ,o) and Im B ( Y,o) due to ignoring

partial waves with1> L is L+p . Similarly using the series E,(1 +I)

the fractional error in Im A( V,t)j and
S z0 F t =O

is estimated to be(63) Ly1 + L ) (3- P) + -2L (1-P)2ý

(63) Errors in -2 Im A( y,t) I t=O etc. can be estimated in the

same way.

In § 3(iv) it will be seen that the values of P(W) given by

Theorem 2 for Im A and Im B in the range 250 MuV - 1 BeV (Table I) are

almost the same as the values given by the Mandelstam representation

(Table 2). We shall therefore take over the arguments of this paragraph

without change to the case of the Mandelstam representation. These estimates

give the error in that part of Im A (Y ,o) etc. which is not due to a

dominant resonant amplitude. For example at an energy for which the

(3/2, 3/2) amplitude makes a large contribution to Im A(Y,o) the actual

fractional error due to ignoring f2 + for £ > L will be much less than

L This reduction in the error is easy to estimate in any particular

case.

These formulae can be used with the help of Table 1 where xo, /(W)

and various related quantities are given.

Lab Energy Pion(c.m.) s=W2  x 2xo2 -1 ox +(x2-1)•J-1 o+(x2_-1) -2

((L-4) om-e~um 0 0 0

(v.150 MeV <c1.4 60-65 1.75/q 6.14/q2 0.29 q 0.084 q2

150 MeV 1.4 74 1.41 3.0 0.41 0.17

300 MeV 2.13 88 1.19 1.83 0.54 0.29

500 MeV 2.9 108 1.07 1.30 0.69 0.47

2 BeV -M 5.6m2 1.011 1.02 0.90 0.81

*2 BeV >>M ,6M2 i.,am/ 4 'iqM/ 4 1-2 2 j -4

Table 1. Values of x (W) given by eqn (2) for various pion energies.

The last column gives P (W) (eqn.(9))
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In evaluating the dispersion integrals in (1.16) and (1.17)

and their derivative relations, partial waves with X>2 have been ignored,

except in the region of the F 5/2 resonance where amplitudes with 40 3 have

been ignored. The errors in Im A(v ,o) and Im B(y ,o) estimated by the

above formula with L = 2 are 0.5% at 150 MeV, 3% at 300 MeV, 12% at 500 MeV.

Taking L = 3 at 900 MeV gives 25% error. Similar estimates for

Im A ( ,,t) t=O and • Im B (w ,t) t=O give relative errors of

14%, 30%, 60% and 75% at 150, 300, 500 and 900 MeV respectively.

In Fig.8 below we show the values of T Im A(Y,t)k = 0

and -t Im B(Ot)It = 0 determined from the known phase shifts and

cross-sections. Clearly, below 1 BeV the predominant contributions

are due to the resonances at 180 MeV, 600 MeV and 900 MeV. The above

estimated errors being percentages of the non-resonant parts, or background

turn out to be unimportant except for energies above I BeV. For these

higher energies other methods are used to estimate Im A( V,o), Im B(Y ,o)

etc. ( cf. • 4(i) and 4(v) below)

(iv) Application of the Mandelstam Representation

According to the Mandelstam representation the amplitude B (+S,)
is of the form

W() t) s•Gr 2 MGr 2 1• ckO f oOltl

(st) =+ + 2  du 1 d' P12

W 0 (M+i%) 2  412

I dtr' ds' P23(t'.s') 1 0 (u R 3 1(sq'ut) (10)
W 2 t'-t)(s'-s) 72 jd (s'-)(u'-u)

4)1 (M+ (M+4) 2 (M+)) 2

where the variables a, t, u were introduced in eqns (1.4) - (1.6a).

Gr2 is the rationalized n-N coupling constant and/& 2 1 /23' /P3 1 are

real weight (or spectral) functions. B(')(s,t) obeys an equation

similar to (10), while A(")(st) obey relations like (10) except that

the terms in Gr2 (the Born terms) are missing.

For fixed energy, s ( and q 2) are fixed, and u and t are linear

in cos 0. Eqn (10) can be used to find the values of cos 0 for which
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B (s,t) becomes singular when cos 0 is extended beyond the physical

range - 1 cos 9 4 1. Suppose that for given s (p (M+) 2) the smallest

value of Icos Of for which (10) become singular is y0 (s). Then B(+ s,t)

is a regular function of cos 9 inside the circle Icos 9f = y0(8) in the

complex cos 0 - plane. Within this circle B(+)(s,t) can be expanded in

a power series in cos 9. and this series can be re-arranged into a series

of Legendre polynomials P (cos @). We must find where the latter series

converges.

In appendix B it is shown that the Legendre series for B(+is,t)

converges within an ellipse in the complex cos 9 - plane which has foci

at cos 9 = I and semi-axes of lengths yo(s) Y Y(s)) 2 -_, along the

real and imaginary axes respectively. The asymptotic behaviour of the

coefficients of the Legendre series is obtained cn replacing eqn(9) by P( w)=
.J- j ) f).' It will be suenthat there is one value of y0(s) for

Re Br+) (s,t) and a larger valuý of y (6) for Im B(+)(s,t). The real parts

of all the amplitudes A B have the same y0 (a), and the imaginary

parts of all four amplitudes have the same (larger) value of y(0 s). In

general the values of Yo(s) exceed the corresponding quantities xo,

Z.x° - I given by Theorems 1 and 2 respectively. This can be understood

since the validity of the representation (10) is a stronger assumption than

the concepts used in Lehmann's proof.

The fact that y (s) is in general greater than x (or (2x 2

is expected to improve the convergence ofthe Legendre Series. The 0

estimated errors in the non-resonant part of any amplitude due to ignoring

partial waves havingt>L, are obtained by the method of the preceding section

if we use for A the value given by eqn(9) when x° is replaced by the

appropriate value of y0 (s). We now determine the values of y0 (s) for

the real and the imaginary parts of the amplitudes.

Values of yo(a) for the Real Parts of the Amplitudes.

For physical n-N scattering the Airst three terms on the right

of (10) contribute only to Re2 B The nearest singularities of Re B
come from the Born pole u a M and the cut t. -p . Thenearest

singularities of Im B( come from the cuts u ' (M + 0)2 and t : 41 .

The Born pole gives a singularity at

coso = 1 
2 + 2, 2

2q
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For ci] I this gives cos = -(M/ 2  - (MIyq2). As q2

increases, cos 9 increases, and cos 9 4 -1 as q 2 • . Value of cos 0

for various energies are given in column 4 of Table 2.

The singularities due to the cuts are not found quite so

easily. This is because the spectral functions &.appearing in (10)

in general vanish over a region adjacent to the thresholds t' = 4)2,

s' = (M +102, u = + W)2 . The region where P 12 (u',t') is

non-zero is shown in Fig. 3. To obtain the region where p 2 3 (t's') is

non-zero we simply replace u' by s'. Fig 4 shows where P1s' u') is
(64),3

non zero.

Now consider the third term on the right of (10). Both

terms in the denominator can give singularities. The term in the

denominator containing u can only give singularities for u .i (M + 1)2

and these correspond to values of cos 9 more negative than those given by

eqn.(11), so they do not affect the value of y (s). Using Fig.3 and

letting u ->00 , we see that the term in t gives a singularity for

t = 442, that is

cos 9 = 1 + 242/q2 (12)

Column 3 of Table 2 gives these values of sos 9 for various energies.

Clearly cos 9-- +1 as q2 -400 .

Values of y0 (s) for the Imaginary Parts of the Amplitudes

From (10) we have for 8 (M+L)2

412 (t'-t) (1+)L)2 u'-u (13)

For given s the nearest singularity is found by using Figs. 3 and 4 to

determine the smallest values of t' and u' for which 02 3 (t',s') and

(64) The boundaries of these regions are given by W.R.Frazer and

J.R.Fulco. Phys.Rev. 117, 1063 (1960) eqns (4.1Oa), (4.1Ob) and
(4.11).

31(',u respectively, are non-zero. Since these values of t' and

u' are greater than 442 and (M + v)2 respectively, the singularities in
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the imaginary parts are further away from the physical region

-1 t. co Q 6 1 than 7re the singularities in the real parts.

The data in columns 5 and 6 of Table 2 give the values of

YO(s) for various energies. For q/,41(the first term on the right of (13)

gives a singularity at cos 9 ! 844/q4, an( the second term gives a

singularity at cos -f -8M2 2/(q 4x (1 + 2M/AL)). For q2 very large the

first term gives cos Q= + 1 + 2L2/q2, and the second gives cos @
2 2 q-(M+I)2/2q for the nearest singularities.

(1) (2) (3) (4) (5) (6)

Lab energy Pion (c.m.) Nearest Singularities Nearest Singularities
(tL-1) Momentum in cosO for the Real in cosl for the Imaginary

(N=1) Parts. Parts.

i-n term Crossed n-n term Crossed
(Y 0°(8)) term (YoW) term

2M
S150 MeV Z 1.4 1+ 2/q2 -M2 / q2 8/q4 q (24+1)

150 MeV 1.4 2.0 -6.25 7 -21.0

300 MeV 2.13 1.45 -3.4 1.9 -8.6

500 M1V 2.9 1.24 -3.0 1.31 -4.3

2 BeV = M 1.044 -1.43 1.048 -1.64
>> 2 BeV >> M 1+2/ 2 -1-M2/2 1+ 2 21-(M+1)2 2

q 2q 1 2 ~ 1( )q2q

Table 2. Columns (3) - (6) give the values of cos @ for which the real

and the imaginary parts of the scattering amplitudes meet their first

singularities in the cos 9 -plane. In each case the i-i term (i.e., the

term in t) gives the nearest singularity and determines y0 (s).

Comparing column 3 of Table 2 with the values of x0 in Table 1, we

see that the convergence of the series for the real parts of the amplitudes

is appreciably better than wouod be inferred from Lehmann's Theorem. The

same is true for the imaginary parts of the amplitudes except for the range

of energies 250 MeV to 1 BeV. Comparing column 5 of Table 2 and Table 1

it is seen that y(0 S) is very little greater than(2 xo2 - 1) at these
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energies. Thus the Mandelstam representation does not appreciably

improye the convergence of the partial wave expansions for Im A(-) and

Im B(-) in this energy range.

Assuming that the ellipse of convergence of the Legendre

series is given by the Mandelstam representation we can go somewhat

further. Since the n-w term (i.e. the term in t) gives a singularity

much closer to the physical region than the crossed term (i.e. the term

in u), the rate at which the phase shifts fall off with increasing angular

momentum is governed primarily by the n-u interactions. Information about

these interactions is known directly from experiments(65), and it appears

(65) See, for example, A.R.Irwin et al. Proceedings of the Aix-en-

Provence International Conference on Elementary Particles 1961,

Vol. 1, p.249 (C.E.R. Saclay) for details of the experimental results.

Also the review by G. Puppi, Proceedings of the International Conference

on High Energy Physics, C.E.R.N. 1962.

that the T = I n-n interaction, which is related to the A(-) and B

amplitudes (but not to A(G) and B(, is only appreciable for t ' 16112

(and possibly only for t -Z 254 2).

For example if we ignore the n-w effects in the T = I case for

t < 15A2, the value of yo(s) for Im A(-) and Im B(-) is appreciably

increased in the energy region 250 MeV to 500 MeV. At 300 MeV and 500 MeV

we get y0 (s) = 2.7 and 1.9 respectively, instead of the values 1.9 and

1.3 given in column 5 of Table 2. This reduces the parameter

) = •0 + (Yo2-_ 1)ý i to about 2/3 of the previous values over this
energy range, and appreciably improves the rate of convergence of

Im A and Im B No such improvement is possible in the case of Im A

and Im B

It should be emphasized that we aim to use dispersion relations

like (1.16) and (1.17) in situations where the dispersion integrals are

predominantly due to the contributions to Im A( Y,t) etc. from the known

n-N resonances. The analysis just given is merely a way of estimating

the errors due to neglecting higher partial waves: it does not include

errors in the resonant amplitudes themselves.
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(v) Deducing the Partial Waves; Validity of the CGIM Method.

Having evaluated the dispersion relations for Re A(Y ,t)

Re B( jVt) etc., we will wish to find the 7%-N partial wave amplitudes.

This is done as follows(2). Writing 62= - t/4 = 2 q2( 1-cos 9)

eqns (1.30) give

f = f + 3f1( 1 _ 222 )f + 1 f +15( 1- 2 -2 3 +
1 0+ 1+ 2 2- 2 2q2 j

q q

f 2 = (f - f +3(1- 2_-__-)( f )+."' (14)
2 1 1+ 2 2- 2+ (4q

f 6 - f L- (-ý )
1 2 1+ 2 2 2+q q q

6 60
2 '-79- (if2 -if2 + if"-+

q q
S1,1,

where F and higher partial waves are ignored and denotes differentiation
2

with respect to /2. Solvin6 (14) gives
if2 f11 2(0) 4 ' 4f(l"

1 2
0+ (0 f1 0) 2 (0 4 0

f- = f 2 (0) f 1'(0)4 + f 2 '(0) - s1 "() +

2 6 4 2 12 (15)
f = - 1 -'(0) " - f''"(0) +

6 12

2 4 4
f2-= q62 f2 ( i-a f1 "(o) + " f 2+ =--ofl(°) +

Here (0) indicates evaluation in the forward direction, 4 2 = 0.

It is necessary to assess how well the series in (15) converge.

For this purpose consider a typical partial wave g. (s). It is given by

an expression like

gg(s) = f 1 dx T(s,x) P, (x) (16)

where T(s,x) is some scattering amplitude (like A,B) and x = cos 9. Eqns

(15) are obtained essentially by substituting in 2 (1 6 ) the expansion

T(sx) = T(s,x=1) + (x-1) ! 1 (X1)2 I4T x=1 +

T(s, A2 0) +A 2  aT .1:(42)2 +... (17)42 2.= t)(A2)2 a2=o

This Maclaurin series must converge for the range of values of x used

in (16), i.e., it must converge for x - I = -2. Thus the circle of
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convergence around x = 1 must have a radius of at least 2. This requires

that the domain of regularity of T(s x) should extend to x - 1 = +2,

i.e., x = 3 ( or yo(s) = 3).
We wish to use (16) for the real parts of the amplitudes, so

Re g (s) and Re T(s,x) appear in (16). Eqn.(12) shows that by the

Mandelstam representation the radius of the circle of convergence of the
2

cosine series is y = 3 for q i.e., at 80 MeV lab. energy.(Lehmann's

results (Theorem 1) give x = 3 at 30 MeV). Thus assuming the Mandelstam

representation, the method of extracting the partial wave amplitudes given

in eqn.(15) should be satisfactory at least up to 80 MeV.

If the radius of convergence p'( p'= Yo -1 or xo-1) of

ReT(s,x) about the point x = 1 is at least 2, then the series for Re g.(s)

which is obtained by substituting (17) in (16) will converge. Similarly

the series in (15) will converge if the corresponding ' exceeds 2. It is

also necessary to estimate the rate of convergence of this series, and

for this purpose we again use (16) and (17). It is easy to show that if

Sis small (and fixed) and n is large then
+1

IV 1e n+1 (8
(l-x) P(x) dx c.. (-1) 2 (18)

f+I

Also by Cauchy's test applied to (17) we estimate (very roughly) that

1 T (- •)-n when n is large. The rate of

'n dxn I x = 1~

(absolute) convergence of the series obtained by substituting (17) in (16)

is therefore similar tm that of the series Z (2 /,)n. From this we
n

expect that the series in (15) will only converge well if p' is appreciably

greater than 2. This behaviour can also be seen in another way. At22
low energies fr = aA+ . q where at+ are roughly constant

(X> 1). Substituting in (14) and putting a 2=0, it is obvious that the

convergence of the series improves rapidly as q2 decreases.(66, The same

(66) Notice that by eqn. (12) ( 2/pi) = 2/(yo-I) = q

applies to the series (15).
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Examples of the Rate of Convergence of Eqns.(14) and ý_151

In fact there is reason to believe that we have somewhat

over-stated the difficulty of using (15). We shall examine some numerical

2
values at 80 Mev (q = 1). We take an unfav.)urab3ecase provided by a

set of experimental phase shifts which give comparatively large D- and

F-wave phase shifts at 310 MeV (67) (q 2 = 4.7). At this energy analysis

of experiments suggests that some D-wave phase shifts could be as large as

0 0
12 and some F-wave phase shifts could be 2

(67) J.H.Foote et al. Phys.Rev. 122, 959 (1961). We use here the

phase shift set SPDF - II. The other sets given suggest a more rapid

convergence of eqns (14) and (15). In j 4 and 5 below, in the actual

calculations, the phase shift set SPDFI, which is considered more likely,

is used.

From this we estimate If 21 12:,0.006 andif 3+"e 0.0002 at

8,OMeV. For comparisot, we note that the smallest P-wave scattering length
2

is of the order of 0.03. Thus at 80 MeV, or even at 120 MeV (q = 1.57),

the D-wave terms in the first three series in (14) are at the most no larger

than the small P-wave terms. Further, using (1-30) we can find the F-wave

contributions to (14). These extra terms are of order 0.002, 0.002, 0.02,

0.012, 0.10 in the eqns (14) for fl, f 21 f i I I f 21' f 1 11 respectively. In

each case, except the equation for f,", these F-wave contributijns are

small compared with the small p-wave or d-wave terms. In the case Of fi"I

the F-wave term gives a 3C% contribution. Also, the situation is not
2

appreciably worse at 100 MeV (q = 1.27) than at 80 MeV.

These numerical values suggest that the series(14) and (15)

are asymptotic approximations at energies somewhat above 80 MeV (say up to

120 MeV). This could be due to the fact that the series for T(sx) in

(16) is only likely to be badly wrong for -1 <. x !ý_ 1- ý01. Provided pl is

not much less than 2 this should not be particularly important for the

smaller (68) values Of.4 . On the other hand the numerical values indicate

(68) For moderate or largeA , P (x) varies rapidly towards x = -1 and

the errors could be appreciable.
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that at 150 MeV (q2 = 2.0) the series (14) may not even give a useful

asymptotic approximation.

The (-) Amplitudes

What has been said so far in this section applies to the A(

and B+) amplitudes. The A(-) and B(-) amplitudes are related to the

T = 1 n + n.-* N + N channel. If, as we suggested in #3(iv) above,

the T = 1 n-n effects can be ignored for t 4 15 2 , instead of eqn.(12)

we have

yo(s) + 750 2
q

This gives a larger radius of convergence, and larger p,(p,= yo-1) so

P' = 3.75 at 15u MeV and P' = 2 at 260 MeV. Thus we expect that in

the case of the (-) charge combination the partial waves can ge deduced

accurately by the CGLN method up to 250 MeV, and tolerably accurately up

to around 300 MeV. In practice this can be tested by estimating the D-

(or F-) wave contributions to (14) and examining their relative importance.

It will be seen in f5(v) below that the calculations in the (-) case

behave well up to 300 ,eV.

(vi) The Subtraction Term in the A(+) Dispersion Relation

It has been suggested(69) that a difficulty arises in using

(69) A.C.Finn, Phys.Rev. 119, 1786(1960)

the dispersion relation (2.36) for A(+)( , A 2 ) (A2 - t/ 4 ) in the

CGLN analysis. A more detailed examination shows that this is not so.

We wish to evaluate the subtraction term A(+)( Y a 2 ) at

02 2
the threshold q2 = 0 (i.e., Yo = ! X-•M. For fixedA2 > 0 the

physical region extends down to q2 =,2 (cf. j 3(ii)) and the segment

0 q2 < 2 is unphysical. As was seen above, Lehmann's Theorem 2 shows

that, for fixed 6 > 0, Im A(+)( Y, A2) can be continued analytically
to the whole of the segment 0 <q2< 2 2 3o d 2 *

However Theorem 1 does not allow us to continue Re A(+)( ,2 ) to the

whole of 0 _q2- 2<d 2  for fixed 42.> 0. On 0 q2 < • 2 we have

Cos Q = 1 ",2 and eqn (12) shows that by the Mandelstam representation
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Re A (y, 62) can be continued for lcos QjI 1 + 211/2. Thus

the Mandelstam representation allows us to ubtain Re AM(+) 09 A 2) for

all 2  such that I1 21 2.

The situation is illustrated in Fig. 5 which shows the main
2 2 2 2features in the real (a , q ) plans for q << 2t . The Mandelstam

representation allows us to evaluate the subtraction term Re A( (Y,ý 2 )

2 ~20anywhere on the segment -! <, d 2< I of the line q = 0. The expansion

(17) can be made, and the radius of convergence p' of the power series in

(0 - x) is infinite for q2 = 0 (p' I 212/q2).

However we do not need to use the Mandelstam representation
(+) 2,here. Theorem 1 allows us to continue Re A (Y , 6 ) up to

cos @ •- 1.75(1/q ) (C f Table 1), so the boundary of the region of con-

tinuation is 2- 2, + 0.87 qL . This is shown in Fig. 5. Thus by

Theorem 1, even for the backward direction, we can find Re A(+) (Y, ) 2

Further, the expansion (17) is quite satisfactory as q .2- 0, and the radius

of convergence P' becomes infinite as q2 0 ( p' -. 1.75#qq). Thus

the series (14) and (15) converge extremely well for q2 small, and for q 2= 0

only the first term remains in each of the series (14). This gives the very

simple result that the appropriate scattering length gives the contribution

of the subtraction term to the various partial wave amplitudes.

(vii) Conclusions

For the (+) charge combination the eqns (I1, which are essential

in the CGLN method of deriving the small partial waves etc. are only

expected to give reliable results up to about 100 MeV. This statement is

based on the validity of the Mandelstam representation. Lehmann's method

gives around 30 MeV as the upper energy limit. Inserting numerical

(experimental) values of the higher angular momentum phase shifts in eqn(14)

confirms the deduction based on the Mandelstam representation.

For the (-) charge combination, if we assume in addition that

the T = 1 n-n interaction is negligible for t 4' 15 1±2, the CGLN method

should work well up to about 300 MeV. The actual results in ; 5(v) below

do confirm this.
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Finally we comment on a method which has been used by

Hamilton et al(70) to deduce the low energy behaviour of the T = 0 and

T = I w-% interactions from low energy n-N scatterIng. This method

(70) J.Hamilton, T.D.Spearman abd W.S.Woolcock, Annals of Phys.

17, 1(1962), J. Hamilton, P. Menotti, G.C.Oades and L.L.J.Vick,

Phys Rev. (in the press)

primarily depends on an accurate knowledge of the S-wave t-N phase shifts

CI and m 3 up to about 120 MeV. The values of a 1 and a3 which are used

come partly from accurate experimental data, and partly from a semi-

phenomenological parameterization of this data(71). This parametrization

which is discussed in f4(ii), below can b• justified by using certain

forward dispersion rulations, and it does not depend on the CGLN method.

(71) J. Hamilton and W.S.Woolcock, Phys.Rev. 118, 291 (1960)

Further, it has been shown(70) that P-wave n-N scattering

in the region 0 - 100 MeV is reasonably consistent with the information

on n-n interactions which is given by the S-wave n-N data. This P-wave

data is partly based on the few accurate experimental results in this

energy range and partly on the CGLN analysis as applied below. It has

been shown above that the CGLN method should give accurate small P-wave

n-N phase shifts up to about 100-120 MeV irrespective of any assumptions

concerning the n-n interactions. The work on the n-n interactions(72)

is therefore in no danger of being influenced by errors which are themselves

caused by the n-n interactions.

(72) In the second paper in rvf. (70) n-N data up to 200 MeV was

used. However the deductions about the n-n interactions were almost

entirely dependent on the data for 0 - 100 MeV.
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4. The Parameters of Pion-Nucleon Physics

In this section it is shown that n-N dispersion relations for

fixed momentum transfer can be used to give accurate information about

the n-N coupling constant f, the s- and p-wave u-N scattering lengths

and other parameters of low energy pion physics. We also discuss the

parametrization of the low energy s-wave scattering. The general idea

is to use dispersion relations in which the predominant contribution to

the dispersion integrals comes from accurately known features of %-N

scattering, such as the low or moderate energy resonances. Using the

experimental data for these large contributions we can get accurate values

of the parameters. The errors in the values of the parameters found in

this way depend partly on the experiuental errors in the resonance

data etc., and partly on the size of the small non-resonant terms which

are either roughly estimated or ignored. We have to assess both of these

errors.

It was first pointed out by Woolcock(73) (i) that the B relation+

( § 4(i) below) gives a very good method of determining the coupling constant
f2, (ii) that the C -) retations ( § 4(iii) below) can yield accurate

information about the combinations (2a33 + a 31) and (2a13 + all) of the
p-wave n-N scattering lengths a2T,2J, and (iii) that the B(4,O) relations

( § 4 (iv) below) can give accurate information about the combinations

(a33 - a31) and (a13 - all). Woolcock(o3) also used the f1 (')'(,o)

relation ( § 4(v) below) to give information about (a 33- a 13). In the

present article we shall allow for a larger error in the latter relation

thaL that in Woolcock's original work. In this relation one term involves

derivatives with respect to the momentum transfer and errors due to the

non-resonant terms and other features will be larger here than in the

other relations we have mentioned. It is important not to underestimate

the size of these errors.

The numerical calculations reported here are mostly due to

Woolcock(73). Some improvements have been made, and we have taken account

(73) W.S.Woolcock, Ph.D. Th.;sis, University of Cambridge (1961)

of more recent experimental data. Also we have used the Regge pole method
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to give better estimates of the contributions to the dispersion integrals

from very high energies. For reasons of space we shall not give the

full details, concentrating rather on the salient points. The calculation

of f2 and the study of the parameterization of the s-wave phase shifts

are given in more detail than the remainder, because of the considerable

importance of these results for numerous applications. Also, the Regge

pole estimates are given in some detail.

(i) Determination of f 2

We define the equivalent pseudo-vector coupling constant by

f= (CM ) G2 (G)

2M 17n

where GR is the rationalized pseudo-scalar coupling constant used in

§ §1,2,3 above. The most promising method(74) for determining f2 is to

use the dispersion relations (1.17) for the B amplitudes in the forward

direction (t = 0). It is convenient to use the amplitudes B for the elasti(
+

(74) W.S.Woolcock, Proceedings Tenth International Conference on High

Energy Physics, Rochester, 1960, p.302.

scattering n + p -* + p. By (1.9) B+ = B B B = B +

In the forward direction V = WL where CJL is the (total) lab. pion energy

(eqn.(1.4)), and using eqn (i), the relations (1.17) give the equations

1 ~~-4f/2 2 mB--) Imd0
- ReB+( ( 0)= 2 + dO Im+o , mB (2a

L 2M 7f £Vn9f -A, it W +LL

-4f 2 / 2 2r i
I ReB( 2O)- + L d.. ImB (,', ,) _ ImB•.w('.0) (2b)

""n+2M 4nM 4J . ' +WL

In the integrands ut is the (total) lab. pion energy.

Eqns(2) are used by i,,serting known phase shifts on the left-hand

side at low energies (up to 200 MeV). The integrals on the right are given

by the absorptive parts of the partial waves, and the best accuracy is

obtained by using the B relation eqn(2a) so that the major contribution+4

to the term containing ( JL,- ( l)- comes from the (3/ 2,3/2) resonance which

in particularly well known. We find the difference between R*B+('LO)/4%
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and the integral for values of •L between 15 MeV and 185 2MeV. This set

of differences is fitted by the function (const)/( W L- ji 2/2M) and the
2

best value of the constant yields the coupling constant f2 . Now we

examine the evaluation of the various terms in (2a).

The basic formula, obtained from eqns (2.31) and (1.30) is

f ffs + _f _ 2. E2• 2 E
B('a,o)/4?cM= +-(2+ f2oJ/

+ 2 M2 ~ fP.j + i2(2ME) fD4j1M(E+M) M(E-M) q q

E f + 1((3 + 2 - 4 (4- ""** (3)

q q q

2 2+ 3
where E = (M + q). The subscript notation for the partial wave

amplitudes f., fW fP.. ...... is obvious. The convergence of

the series has been discussed in 3 3(iii )•,i@(/)

(a) Evaluation of Re B +(' L,0)/ 47EM

The dominant contribution to Re B (WLL,0) over the range 15 MeV
+ L

to 185 MeV is the P31, term which is given by the a33 phase shift. This

contribution varies from about -0.48 at 15 MeV to below -0.1 at 185 MeV.

The remaining terms are small and we consider them first.

The s-wave term is very small, due to the large denominator

LR(E + M)7 -1. It is of order -0.001 at the lower energies, and is somewhat

bigger near 185 MeV. It is quite sufficient to use the semi-phenomenological

fit for a3 given by Hamilton and Woolcock(75). The P term can be evaluated

by using (and interpolating) the accurate results for '31 at 24.8, 31.5 and

(75) J.Hamilton & W.S.Woolcock, Phys.Rev. 118(1960)291. The solid curve

for =3 in Fig. 2 of that paper is used. This curve continues well to

the 310 MeV value of a 3 given by J.H.Foote et al. Phys.Rev. 112, 959 (1960)

41.5 MeV (Rochester)(76), 97 MeV (Liverpool( 7 7 ) and 310 MeV (Berkeley)(79)

(76) S.W.Barnes et al. Phys.Rev. 117,226 and 238(1960)

(77) D.N. Edwards and T. Massam (Private Communication). We are indebte4

to Drs. Edwards and Massam for communicating their results.

(78) J.H.Foote et al. Phys.Rev. 122,959 (1961)
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Several other (less accurate) values of 31 are used. The error in the P 1

contribution to eqn(3) is 0.008 at 40 MeV and 0.004 at 200 MeV.

The contribution of the d-wave phase shifts to ReB+ is not

negligible. At 310 MeV Foote et al(78) found &33 = 3 91 Q! 2.6a,

&35 = 490 + 2.20 (the SPDF-I fit). It is reasonable to assume that these

phase shifts vary with energy as q , (this cannot introduce important errors).

Errors or ambiguities in the d-wave phases do not cause as large errors in

Re B+(47M below 200 MeV as might be expected. This is because changes in

and also alter the experimental values of 031 and 033 which we•33 and 5 (79) '3 a3

have used , and the two effects act in opposite directions. The

errors given for Re B +/4nM in Table5 below include the effect of uncertainti-

in the d-wave analysis at 310 MeV, and they allow for the SPD or the SPDF-I

sets(78) being possible.

As to f-waves, even if the phase shifts are of order 0.50 at

310 MeV (the SPDF-I fit(78)) this only gives a contribution of around

0.008 to Re B+/47tM at 185 MeV, and much less at lower energies. Higher

partial waves can certainly be ignored. In the notation of § 3( iv ) the

radius of convergence of the series (3) for Re B+/4nM is y 0 2 at 180 MeV,

(79) We are indebted to Dr. T. Massam for information on this point.

and (3) should still converge well at 180 MeV.

Finally we examine the Pt term. There is much experimental

data on a033 in the range 15 - 185 MeV. At the lower end of the energy

range these values are used directly. Woolcock(73) found that for other

energies the most accurate values could often he found by using the formula

for the total cross section(8 0).

27 ai i 2 +2sn2 2a120' 0q2 4 +sial '33n0 +2s M2
3 + 3sin2 3

(4)
The phase shifts a3, a31 ' 3 • are not large. Even if some of them

are not known very accurately, eqn(4) will give accurate values for '3

whenever 0+ is known accurately. The values of a3 which were used are

(80) Inelastic processes are negligible at 185 MeV.
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given in Table 3. The values of Re B+(WL,O)/ 41m are given in TableS

Lab.Energy a 3 3  Lab Energy '33
(MeV) (Degrees) (MeV) (Degrees)

15 0.8t 0.2 113 27.5t 1.0'

25 1.9t 0.4 120 ( 31.4t 2.0
( 31.8t 1.6

35 2.8t 0.7 135 40.8 ±0.8*

37 3.1- 0.8 143 45.7 t1.1*

40 4.5t 1.0 144 48.2 ±0.9*

41.5 4.3t 0.2* 150 55.1 t2.0

45 4.4t 1.1 170 69.5 t2.4*

58 7.5+ 0.5" 173.5 70.8 ±1.5*

78 13.O± 2.0 176 75.2 t3.1*

80 12.4! 2.1 177 75.1 t3.1*

97.1 20.9± 0.3 183.5 76.1 12.5*

100 21.7t 1.2

Table 3. The values of a33 used in computing Re B+(k L,0)/ 4nM. The

asterisks denote those values obtained by using eqn (4). The remainder are

from phase shift analyses of differential cross-sections.

'b) Evaluation of Im B+ (W ,0)/4xM for 0 - 350 MeV

In this energy range the dominant contribution to Im B+/ 4itM

is given by a33. The other phase shifts give much smaller contributions,

and the information on these phase shifts which was discussed in the

preceding paragraphs is quite sufficient and gives adequate accuracy for

Im B +. The X33 data in Table 3 is smoothed in order to evaluate the

integral in (2a). Following Noyes and Edwards (81), Woolcock(73) uses

q3cot a 33m d + c(5= mM+ c (5)

where w'+ M = W is the total energy in the c.m. system and m and c are

constants. These have the values m = -3.81 ± 0.071, c = 8.349 ± 0.125

(81) H.P.Noyes and D.N.Edwards, Phys.Rev. 118, 1409 (1960)

(units t = c = s = I as usual). The errors in m and c have a strong
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negative correlation, and the actual errors in cot a33 are very small.

With these values eqn(5) is a very good fit to all the a33 data up to

190 MeV.

Above 190 MeV there is a one-sided deviation of cot x33 from the

Noyes-Edwards curve (5). All the experimental data on a33 (from phase

shift analysis and from o'+) in the range 190 - 350 MeV was collected,

and it turned out that a smooth curve could be drawn through the standard

error limits on nearly all the data. The 310 MeV value(78) 134.80

t 0.60 has a very small error and this helps considerably to pin down the

curve at the high energy end. Essentially in this energy range Im B+ is

known about as accurately as or+.

For Im B we use the formula

Im B_(W1L,0) = i ImB( 0) + Y4Im B O) (6)

Up to 250 MeV reasonably accurate values of the T = h phase shifts are known

and it is clear that the T = 3/2,term in (6) is predominant. For 250-350 MeV

the phase shift set aspD of Zinov et al (82)was used. In fact, using the

bSPD set causes little change as the main contribution is from a and ja1il

is about the same in both sets. Near 350 MeV, Im B(YO begins to increase

(82) V.G.Zinov et al Soviet Physics, J.E.T.P. 11, 1016 (1960)

rapidly because the I13 d-wave phase shift starts to rise towards the

600 MeV resonance. This will be discussed below.

(c) Charge Independence

In writing (6) we assume charge independence, and it is relavant

to consider the possible effect of small violations of charge independence

in a calculation which aims to find the value of f2 accurate to a few

percent. A good test of charge independence in the elastic region is

given by the relation between charge exchange scattering n'+p -. io + n
and elastic scattering n + p #.j " + p. At threshold (83)and at low

energies (up to 225 MeV(84)) the relation appears to be well satisfied. At

(83) See J. Hamilton and W.S.Woolcock Phys.Rev. 118, 291 (1960) for the

situation at threshold.

(84) J.Deahl et al. Phys. Rev. 124, 1987 (1961)
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higher energies accurate charge exchange data is not available, but up to

around 350 MeV the n" -p scattering data has been analysed with considerable

accuracy using charge independence (the point here is that the T = )i phase

shifts can be assigned real values).

Above 350 MeV the higher resonances (600 MeV, 900 MeV, 1.35 BeV)

appear either in the T = i or T = 311 states. Also the analyses(85)

of charge exchange data( 7C + p -n 0 + n) near 600 MeV and 900 MeV

are consistent with charge independence. Nevertheless for all we know

there may be some departure from charge independence at energies above

(85) J.C.Brisson et al. Nuovo Cimento 19, alO (1961)

R. Omnes and G. Valladas, Proceedings Aix-en-Provence International

Conference on Elementary Particles (1961) Vol.I, p.467.

250 MeV. It can be seen that even if this is so it should have very little

effect on our results.
+

The dispersion relations (2) relate to elastic n- - p scattering,
(86)

and their derivation does not require charge independence . The

experimental date which is inserted in (2) comes from the differential cross-

sections for elastic n - p scattering and the total cross-sections +

(which are related+to eleatic scattering through the optical theorem).-

In analysing the n - p scattering data the relation

T_= 2T() + 1T 2)
- 3

is used for the n" + p elastic scattering amplitude T, and the same

combination of isospin amplitudes is again used to give the values of B

which are inserted in (2). Thus if charge independence is not exactly valid

above 250 MeV, no error is produced in our calculation (the phase shifts

for the T(NO amplitude need not be real(87) at these energies). Of course

the ampl3tude T(00 is then no longer an isospin amplitude. Finally

(87) If the charge exchange (n" + p -- 0 + n) rate were much smaller

than that given by charge independence, the real parts of the T (A) phase

shifts might have to1  However references(85 show that the

charge exchange rate is about what we would expect by charge independence.

(i)See forexrwt I M PN";Jto,., RAy.I Rev. 110, W40J'S7)
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we note that at very high energies (uL• 2BeV) we find Im B_ directly

from the total cross section ar (see below).

(d) Evaluation of Im B +(W L,0)/4nM for 350 MeV - 2 BeV
+

There is an accurate phase shift analysis of nt - p scattering

at 500 MeV(88) , ard other analyses(89) at relevant energies, so there is no

(88) W.J.Willis, Phys.Rev. 116, 753 (1959)

(89) M.E.Blevins et al, Phys.Rev. 112, 1287(1958), W.D.Walker et al

Phys.Rev. 118, 1612 (1960)

difficulty in obtaining Im B+ sufficiently accurately up to 500 MeV. From

§ 3 Table 1 or 2, we see that the radius of convergence of the Legendre

expansion of Im B is 1.3, so we expect the series in eqn(3) to converge

slowly at 500 MeV and higher energies. Therefore other methods must

be used to find Im B at such energies. The method used is to estimate

Im B+(W L,0) at 2 BeV from an optical model. Between 350 MeV and 2 BeV
- +

there are resonances in both the n - p and n - p cases, and the

coatributions to Im B+ from the resonant partial wave amplitudes are

determined by a method given below. The r-maining (non-resonant) parts

of Im B+ are obtained by drawing smooth curves to join the calculated values

of Im B_ at 350 or 500 MeV on to the 2 BeV values (making any possible use

of any phase shift analyses which are available between these energies).

This procedure for getting the non-resonant parts of Im B+ in this energy

range is not particularly accurate, but it is seen from Table 4 below that

their total contribution to the integral in (2a) is very small, so even

large percentage errors are unimportant.

Woolcock(73) estimates the value of Im B+ around 2 BeV by using

a partially opaque disc optical model(90). The spin flip amplitude g( 0 )
(eqn.(1.28)) is assumed to be unimportant(91) and the no-flip amplitude

f(Q) (eqn. (1.28)) is given by R

f(G) = i( 1-a) q o 0(q e sing) p dp

(7)
= i(1-a)RJ1 (qR sin 9)/sinG

where R is the "radius" of the nucleon and a the opacity parameter

(90) Inside the first diffraction zero an optical model can be consistent
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with the Regge pole results provided the parameters of the r:'el vary

slowly (logarithmically) with energy.

(91) As was seen in j 2(viii) above it is by no means obvious that the

spin flip amplitude g (@) can be neglected. However any error here should

not change the estimates of Im B by more than a small factor.

From experiments in the region of 2 BeV it is estimated that R = 1.04 x 10" 1 3 cm

= 0.74 units and a is real with 1 - a = 0.43. Neglecting for the moment
"+ d o '.•

any difference between the n -plamplitudes, for energies near 2 BeV this

gives, using eqn (2.45)

1 Im A+( w,,O) = q w + M x 1.16 x lo--1

(8)1 11

Im B+(UJL,0) = q E1+ M x 1.16 x 10-1

The real difficulty about Im B in the range 350 MeV - 2BeV is the+

nature of the hump in the a+ cross-section at 1.35 BeV(Fig.6). If this is

due to one or several resonances, then one or several of the terms on the

right of (3) will be comparatively large. Several authors (92)suggest

that there is a (T= 2) P resonance at 1.35 fRV. Others(93)suggest
2 3

that there is a d5/2 reso ince at 1.2 BeV aud a f7/2 resonance at 1.4 BeY.

(92) N.P. Klepikov et al, Dubna Preprint (1960) ; W.N.Wong and M.Ross.

Phys.Rev. Letters 3, 398 (1959)

(93) R. Blanckenbeckler and M.L.Goldberg, Phys.Rev. 126, 766 (1962),

footnote 24; W.M.Layson, CERN Preprint (1961)

The contributions to Im B from such resosances are found as

follows. Let a, be the resonant part of the total cross-section

(it is found by estiLating how much of the cross-section is merely back-

ground, bearing in mind the limits set by unitarity and the elasticity

parameter). The optical theorem gives

(j)Q Im _ (9)
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where ft + is the resonant amplitude. From the estimated width and

height of-the resonance we can now obtain the contribution to the integral

in (2a).

As an example we shall give a rough estimate of the contribution

from the 1.35 BeV hump in 0. From Fig. 6 we estimate that if this is a pj/

resonance then the resonant part (r is 15 mb. at the maximum, and the

width at half height is around 400 MeV. Using eqns(9) and (3) we find that

this resonance contributes -1 x 10-3 to the integral in (2a). Alternatively,

if the hump consists of dy/. and f7/ resonances at 1.2 BeV and 1.4 BeV

respectively, each being 10 mb high and 250 MeV wide (at half height),

they will contribute -1.10-3 and -1.7.10-3 respectively to the integral in

(2a).

In the values given in Table 5 belowthe hump was assumed to be

a pI, resonance. The estimates just given show ' at this will lead to a

value of which is (a) too small by 0.0004 if there is no resonance,

(b) too large by 0.0006 if there are actually d V and f'1, , resonances.
a 2These uncertainties are included in the final error quoted for f (eqn.(15)).

We) Evaluation of Im B (w L,0)/ 4IM from 350 MeV - 2 BeV

The procedure here is almost the same as in the case of Im B+

The only difference is that the ds/. and fsl, resonances at 600 MeV and 900

MeV have to be treated somewhat more carefully as they give lwger

contributions than the n+-p resonances mentioned in the previous paragraph.

Using a Breit-Wigner shape Woolcock(73) estimated that the resonant part of

at 600 MeV was 27 mbb. at maximum, and that at 900 MeV the corresponding

figure was 26 mb. Then using eqn (9) the contribution of the resonances to

the integral in (2a) was evaluated. The value used for the resonant part

of the cross-section at 600 MeV is perhaps a little too large. A recent

analysis(94) suggests 23 mb, and this correction is included in the final

values for the integral given in Tables 4 and 5. (The correction is in fact

very small as can be seen from Table 4).

(94) R. Omnes and G. Valladas (reference (85)). These authors suggest that

there are also moderate amounts of amplitudes other than Da and F* at

600 MeV and 900 MeV respectively. These give corrections which can be

ignored here (cf f 5(11) for further discussion).
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(f) The Very High Energy Contribution

In the original calculation(73)(7 4 ) of the integral in (2a)

ImB+ ( o' ,0) and ImBE ( d ,0) were t~ken equal above 2.5 BeV. Recent

experimental results•95j and the Regge pole methods make it possible to

esti:iate more accurately the contribution from above 2 BeV. By eq.(1.35)

(95) See Fig. 2 above'

fL(LL,0) n -(A + WLB) '10)

where fL( WL,0) is the forward scattering amplitude in the lab.system.

In f2(viii) we gave reasons for believing that A( v,t) does not attain its

unitary limit as /-*cO . Thus for very high energies eqn(10) gives
C- J 1  (-)

Im B(-) LO) " 4n I ( fL 0) (11)

- C, -C)

Also B(-) = Y•(B - B+), and (II) can be used to find the high energy

contribution to (2a).

Using the Regge pole approximation and the high energy data

(Fig. 2) Udgaonkar(96) estia-ates that, for large to L

aCL) - (T ( U ) j -v cx (o)_
L + L L

where a (0) -. 0.5. It is clear from the data that Cr must equal
10 - +

(96) B. Udgaonkar, Phys.Ruv. Letters 8, 142(1962)

at some energy near 2 BeV (see Figs. 2 and 6). Also cr - o+ 2.5 mb at

4 BeV. To be conservative we shall assume Cr - 0+ = 2.5 mb. over the

range 2 - 4 BeV. Above 4 BeV we use 4 e
a - WL) - (2.5 mb)( L

This ves( ') - =3(o'(

e2B V ...

(97) The unit of area is 20 mb.
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on using aP(0) = 0.5

Substituting (11) and (13) the integral in (2a) gives the

contribution -1.2 10-3 from energies o'> 2 BeV. From Table 4 it is

seen that this is not negligible. However this is an overestimate of the

high energy contribution. From eqn (8) we see that (98) Im A -) will also

contribute to Im fL(WLO) (eqn.(10) at the lower end of the range

(98) to allow for th,. difference between o_ and a'+ the numerical factors

in eqn.(8) have to be different by about 8% in the t cases.

2 BeV ! w L !6 . To correct for this, we estimate(99) that it is

necessary to multiply the above result by 0.4, so that the contribution
-4to the integral in (2a) from w' V 2 BeV is - 5.10- . Ignoring this

term would change f2 by no more than 2.10-4.

(99) This is obtained by comparing the incorrect value Im B+ = 4Y+

given by ignoring A+ with thQ value predicted by eqn(8) near 2 BeV. This

correction is consistent with the value of Im A+ given in eqn.( 8 )

(g) Summuary and Result

In Table 4 we give the contributions to thE integral

1 P ,[Im B+(to',O0) Im B( W•, 0)I P d)[I .. ... . - ..... (14)

47Em f •L + W L

forW L = 1.286(40 MeV). This shows how the contribution to I from the

(*,,3/t) resonance dominates. Even the next largest contributions, which

come from the d3/, and fsr n" - p resonances, are very much smaller.

Energy Region Integral over Integral over
(NeV) Im B+ Im B

0 - 300 -203.8 +14.2

300 - 500 -10.9 -2.1

500 -1200 -2.8 (100) -14.8

1200 -2000 -0.1 -0.4

2000 - -0.1

Table 4 Contributions to the integral (I/n) 10(eqn.(14)) from various
energy ranges for W L = 1.286 (40 meV).

(100) The sum of these terms is to be replaced by approx. -1.9 if there is
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no resonance at 1.35 BeV, and by -4.6 if there are d51 and f

resonances at 1.2 and 1.4 BeV.

In Table 5 we give the values and errors of Re B+ (wLO)/4wM

and the integral I/n for the 24 values of 'OL for which we have

determinations of a 3 3 (Table 3). The last column gives the value of f
deduced from eqn.(2a). The errors quoted for I are standard errors derived

from the errors in the experimental data and various uncertainties which

were discussed above. (The possible systematic error mentioned in footnote

(100) is not included in Table 5 but is included in the final value of f

in eqn (15)).

The values of f2 in the last column of Table 5 are remarkably

consistent. Incidentally they provide a good proof of the validity of

the B dispersion relation (2a) up to 185 MeV. The errors in the values

of f2 cannot be treated as independent for various reasons. For example,

the 135, 143 and 144 MeV data are undoubtedly correlated. There are
2various ways of getting uncorrelated values of f . We could select the

value of f 2 with the smallest error in each of the five sections of Table 5.

These relate to well separated energies and they will be un-correlated.
2Their weighted average is f = 0.0825 - 0.003. More data can he used

by selecting the value of f2 with least error in each (non-overlapping)

20 MeV energy interval. Again, correlation of errors should be
2unimportant. The weighted average is f = 0.081 ! 0.002. Finally we have

to allow for the poasible systematic error due to lack of knowledge about

the 1.35 BeV hump in n+ -p scattering. We are certain. to include this

if we write(101)
2f = .81 t 0.003 (15)

(101) The reasons for the differences from the value f2 = 0.080+0.002

given in reference (2) are (a) the present analysis is more careful about

possible correlation of errors in Tahle 5, (b) a larger error is allowed

for uncertainties about the 1.35 BeV hump.
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Lab. Pion -ReB+(&,O)/ 4 wM -I/f
Energy (4eV)

15 0.482 0 0.103 0.183 t 0.003 0.097 - 0.026

25 0.491 ± 0.087 0.198 + 0.003 o.08i + 0.024

35 0.442 - 0.100 0.213 t 0.003 0.067 - 0.029

37 0.446 ± 0.099 0.216 t 0.003 0.068 t 0.029

40 0.552 + 0.108 0.221 t 0.003 0.100 t 0.033

41.5 0.507 - 0.014 0.224 - 0.003 0.086 - 0.005

45 0.458 t 0.098 0.230 t 0.003 0.071 t-0.030

58 0.495 t 0.028 0.252 t 0.003 0.081 - 0.009

78 0.506 t 0.067 0.289 t 0.004 0.081 t 0.025

80 0.468 + 0.068 0.293 t 0.004 0.068 t 0.025

97.1 0.522 t 0.008 0.314 - 0.0o4 0.084 t 0.004

100 0.510 t 0.022 0.314 t 0.oo4 0.080 t 0.009

113 0.485 - 0.013 0.306 t 0.003 0.078 t o0.o6

120 0.471 t 0.018 0.293 t 0.003 0.079 t 0.008

120 0.474 t 0.014 0.239 t 0.003 0.081 - 0.006

135 0.420 t O.008 0.253 t 0.004 0.079 t 0.005

143 0.380 o 0.008 0.219 t 0.004 0.078 t 0.005

144 0.374 ± 0.008 0.214 t 0.004 0.079 t 0.005

150 0.327 t 0.013 0.179 + 0.004 0.074 t 0.007

170 0.175 t 0.019 0.040 t 0.003 0.073 t 0.010

173.5 0.158 - 0.012 0.011 t 0.003 0.080 t 0.007

176 0.170 + 0.024 -0.008 t 0.003 0.070 t 0.013

177 0.113 t 0.024 -0.016 t 0.003 0.071 t 0.013

183.5 0.099 ± 0.018 -0.041 t 0.003 0.080 1 0.010

Table 5 Values of -ReB+/4nM and the integral I/n (eqn (14)) for

24 values of &jLe The last column gives f2 determined by eqn.(2a).
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In f4(viwbelow the result of another determination of f 2

is given.

(ii) Parametrization of Low Energy s-wave Scattering

It was pointed out by Cini et al(102 that the expansion

3i= + + ciq5 + ... (i = 1,3)

is not a good way to fit the s-wave i-N phase shifts a 1 and 03 even for

energies up to 50 MeV. The convergence of the scrios is poor, and by

using it one can readily deduce incorrect values of the scattering lengths a1

and a3 from low energy experimental results. Dispersion relations suggested

much better expansions which we applied to the low energy data in an earlier

paper(75) and found consistent and accurate values for a and a3.

(102) M. Cini et al. Nuovo Cimento 10, 242 (195F)

The best form of these low energy expansions for the s-wave

phase shifts can be obtained from the forward scattering dispersion

relations (2.6). We write as usual D(+) = Y2 (D+ + D_), -= WD-D+)

where D+(w ) are the real parts of the forward scattering amplitude in
L + +

the lab. system for n + p -- i. + p at (lab) energy &L" Then eqns.

(2.6) give

- ,;..-,, 1 (16)

p-$ f dw ctfO, / o _ L.. 7I17

where -(+)= +(- ) Here ar+ are the total cross sections for
n + p scattering, and qL, q' are lab. momenta and &L' W1 are the

corresponding lab. energies.

We put u = I in all that follows. Using (1.33), (1.31) and

the partial wave expansion (1.28) the left-hand sides of (16) and (17)

can be written in terms of the phase shifts. Also by (1.37)

DWM+(1) = (0 + -1) x '(al+ 2a&), D(-)(1) = (1 + -1) 16(al - a3). Now

rearranging (16) and (17) we have
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4 -., 2- t,--7.
+ (d-. a*e'" 20e3W

Jo

J (19)

Here P2T,2J = e ia 2 T' 2 J si •2T,2J/q 3  where a2,2 are the p-wave

Ito'~2 W, W2+Jj

n-N phase shifts and q is the momentum in the c.m. system. The d-wave

terms in (18) and (19) are of the form: (d-wave scattering length) x q and

they are very small for energies below 100 MeV.

It is convenient to write (18) and (19) in the form

sin 2a 1 + 2 sin 2a W (+) 2
1- = (a1 + 2a) + q (20)

2q M+1

sin 2aI - sin 2a W 2

2-q (a -a 3)WL + q-) (21)
2q M4+I

where C( ad C (-) are given by the terms inside the square brackets in

(18) and (19). Woolcock(73) roughly evaluated these expressions for C(W

and C(-) at low energies. The experimental values of 0+ and O3
(of Table 3), and the value (15) for f? were used to give accurate values

of the integrals, the Re p3 terms, and the Born terms. Estimates of the

remaining Re P2T, 2J at low energies were made on the basis of the
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available phase shift analyses. The results showed that these

expressions for C(+) and C(') varied only a little over the energy range

S- i) S 45 MeV.

Next the eqns (20) and (21) were used to fit the experimental

values(103) of a and a up to 45 MeV, and it was found that, to within

the experim~ntal errors C W and C(-) were constant over this range

of energies.

(103) The available accurate data used were 13 values of sin 2a3,3 4 values
of (2 sin 2a 1 + sin 2a 3) and one value of (sin 2aI - sin 2a3). For details

see reference (73). The nppropriate inner Coulomb correction (J.Hamilton

and W.S.Woolcock, Phys.Rev. 118, 291(1960) was used bearing in mind that

different authors may use different values of the Coulomb cut off radius

Iro

Why C(+) and C(-) are almost constant at low energies

The fact that C(+ and C(-) are constant at low energies may

appear somewhat surprising sinct individual terms in the square brackets

on the right of (18) and (19)vary considerably with energy. We begin to

understand the reason for tr.is rvsult if we use the rough approximation for
(2)the p-wave amplitudes p2T,2J given by C.G.L.N. . These equations are

R4E A~#t J-O Jr

+" -Y +

J?. ~At 4A 'L~,&~ (22)

Here WJ= W-M, where W is the total energy in thu c.m. system, and K is

a cut-off whose value is around M.

According to eqns(22) the chief variation in ReP 3 3 at low

energies is due to the Born term 4f2 /3t# and the principal value part of

the integral. The chief variation of the remaining Re P2TZ2J at low

energies is due to their Born terms. Further, the mainlow energy
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contribution to the integrals within the brackets in (18) and (19) is

due-to the principal value integrals. We can approximate them a's follows(10)

~Pj~t 40• - P t

3-,33 W

(104) The approximations used are only intended to give a good account

of the variation of the various terms with 4jL at low energies.

where we have used
qL/q w/M, , = (a 2 _-)

2M - M

and, C-+ (w 8,nq Im p 33 (w•) 8nq% L -w )I m p 33 (W,

Similarly
00dp ' C > .• -• /'

Now if we substitute the expression (22) for Re P3 3 in (18) and (19) we

find that the principal value integrals cancel each other. Further the Born

terms in (22) contribute -6f 2 / ,x and 0 to Re(p 1 1 +2p 3-p 3 '-2p33 ) and

Re(p 1 1 +2 p,3 + 2P3 1 + 4 p3 3 ) respectively. Using (L( IiL -4a2)ZM/Wj-

it is seen that the first of these cancels the Born term in (19). The

Born term in (18) is less than 3f 2/M+l so it can be ignored here.

(We could go further and show that the terms in (22) which are of the form

d"' IMP (3 ' )

cancel the remaining integrals in (18) and (19))

The reason for this cancellation is obvious. C.G.L.N.(2)obtain

th$ approximations ý22) for the p-waves from the dispersion relations for

A - ( V,t) and B(Z) (Y ,t) (6qns(l.i6) and (1.17) by assuiming InltE alia
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that P3 3 is dominant and ignoring the coupling with other partial waves.

Naturally their relations must hold for the p-wave contributions to forward

scattering, so all the p-wave terms disappear from the right of (18) and

(19). The correct(105) dispersion relations for the p-wave partial

amplitudes are considerably more elaborate than (22). The unphysical

region integral contains coupling with other partial waves as well as

(105) See for example J.Hamilton, P.Menotti, G.C.Oades and L.L.J.Vick,

Phys.Rev. (in the press).

effects of the T=O and T = I i-i interactions(105). However, for values of

W L between 4 and 4 + 45 MeV, the terms given in (22) still provide a

rough approximation to the. energy dependence of the p-wave amplitudes.

This is because at such energies the long-range Born tvrms are large in

p-wave scattering, and they have the strongest energy dependence.

We therefore understand why C(+) and C(-) are constant up to

45 MeV. Howeverfor thL purposes of this article this constancy is an

empirical fact found by fitting eqns (20) and (21) to the low energy

experimental data(1i6)

(106) The arguments used in rcference (105) and related papers to find

the i-n interaction from low cncrgy n-N scattering are based on the s-wave

i-N phase shifts. Thc experimental data is correlated using a more general

form of eqns.(20) and (21) in which C are not constant.(cf. reference(75)).

(iii) Relktions for thc p-wav. scattering lengths.

The C(")Relations

The quantities C(+) and C(-) which are dettrmined from the low

energy s-wave experimntal data, can also be used to give relations for

the p-wave scattering lengths. These are defined by a 2 T,2J Lim ReP 2 T,2j

Letting C.L-*11 in the terms inside the square brackets in (18) and (19)

we get

?1L a!I~ L - , (a, -#- .a., it~+OP-144.%)
)~. fU~f..I4'~) ~(23)
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dW1

where + ,I, = Y and u', q' are the lab. system
- +

energy and mom~ntum of the pion. Applying Theorem B of I 2(ii) it is

seen that there is no divergence at the lower end of the range of

integration in th.; integfals (this is the case a = Y2 of Theorem B). From

the very extensive data on 0+ and 01 it is easy to evaluate the

integrals in (23) and (24) to high accuracy. This gives(73)

1(2a 33+ a (C(-)-C(+)) 2 0.166 t o.oo6 (25)

(1- 1 )( 1

1 W (4f (1( Q- )M

(42a 3al)+ )C= 0.0661 0.004 - (26)13 (~i - )2

(iv) The B(i,O) Relations

Letting WL4- I in eqn (3) gives
limi (1 2 LRe B(O 0)/ 4 nM = q2 0 12M2  q 2 P( P it,

Thus

a-a 1 ReB 2(2,0) -3 1 3 3 M 4 M2

1 B(1) a 1 (27)
a11 - a 13 = , Re i1m0) - 2

where a1, a3 are the s-wave scattering lengths and the superscripts on

B are the isotopic spin values. It wvs seen in jf2(vi) and (vii) that

the dispersion relations (1.17) for B( (.,t) converge and no additive

constant is required ( §2(ix)). Using B 2 (1,0) = B÷(1,0) and +

B(f)(1,0) = _B(1,0) - 6 B+(1,0) we again relate all quantities to n--p
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elastic scattering(107). By (1.17) and (27) we get

(a 3 3 . a 3 1 )- 2f 2  a 1 1 + (28)

(1- -1-) 4M2  2

2 1 a
(a -al)- 2f..-.) 1 + I+ (29)

131 - 1 2 44 +
(-) 4M2

(107) The subscripts ± alwqys refer to n -p scattering

where

1 1 d I, B+(t., 0) Im B;(_ ,O)

S4•24 M Jdw-t wM1' + 1
1

and e' is the pion lab. energy.

The coefficient multiplying the s-wave scattering lengths in

(28) and (29) is so small that these tcrms are very accurately known.

It is quite sufficicnt to use our earlier values(75) a1 = 0.178 t 0.005,
a3 = -0.087 ± 0.005 here. The integrals 1+ are very closely related

to the integral (14) used in §4(i) in the determination of f 2 and the

method of evaluation is the same. This gives(73)

a a 1 - 2 = 0.079 + 0.003 (30)a33 " 31 -1 - -
2M

2 1

a13 -al, - 2f (1-M) = -0.066 + 0.003 (31)

(1- 1 a )4M2

(v) The fl(L,o) Relation

We now examine a relation between T = Y and T = p-wave

scattering lengths which, unlike eqnj (25) and (26) above, do not involve

the s-wave curvature coefficients C(-) This relation is obtained by

differentiating A( Y,t), and B(V ,t) with respect to t, at t = 0, and it

expresses a linear combination of a3 3 , a 1 3 and f in terms of a dispersion
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integral. The disadvantage of this relation is that the dispersion integral

cannot be evaluated quite as accurately as those we have previously discussed.

This is due to the fact, which was pointed out in j 3(iii), that the partial

wave expansions for bA/,t and DB/) t do not converge so well as the

expansions for A and B. As a result, our lack of accurate knowledge of the

details of the higher n-N resonances is a strong limitation on the accuracy

of the derivative dispersion integrals.
Using eqns (2.51) and (1.30) and writing A2 = - t =

1q2•l-cos @), sixple manipulation gives

1 6AI -6M I(L•)f•v

=0 (oAL+wc)fD3 + 2(3e L' 2 •c)fDSa626 2__0 q L

-2(3wL+2'jc)fF+ 10(2fL- C4'd)fF -10(2WL+ Wc)fG'J+ (32)

+10(5h)L7W)f Gj 1O(5e1L+7&c)fH¶.+ .... 1

1 DB = - 6 f41 _- 6 (E+M)fD -2(3M-2E)fD+
T " E+M q2  q-DD ft

+2 (2E+3M)fF% -10( 2M-j)fF;, +10(E +2M)f G 7z (33)

-10(5M-2E)fG + 10(2E+5M)fiq9 + 3
Here 4JL is the total lab. pion energy, and we have written w for the

c.m. pion energy (1+q 2) .

Further, by eqn.(1.30)

Re f (Y,t=O) = -2 Re {3f!+ + 15f2+ - 3f3- +

q

where the dash denotes differentiation with respect to ,2 and f +

are the partial wave amplitudes. Therefore
a3 a13 Ref(1-)(1,0) (34)a33 -a13
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where as usual we put 4 = 1. For reasona of convergence, as discussed

in f2(vi), we only consider the (-) charge combination. By eqn (1.26)

Refl (1,0) = 4n(+ 1 ReA( )(1,0) + ReB(-) (I,0)J
M

Differentiating the (-) dispersion relations (1.16) and (1.17) with respect

to A2, and using eqn (1.34), we get
(a -a2f 2  (35)

33 13 ( + R)(1- 1 2

2M

where

MJ 4n( +1 2 IM (( +1)) 2  +

I 1
11

Here wl' and qI aru lab. values and L7 art the total n -p cross-suctions.

We now examine the accuracy with which T can be evaluated.

Very High Energies

In the original evaluation .of Y Wooleock(73)assumed that A(-)

and B(-) were zero above 2.5 Bev. It is now known that this is not so,

and we have to estimate the contributions to Y from energies above 2 BeV.

For this purpose wc use the high energy behaviour suggested by the Rtgge

pole method(10o) (cf. §4(i) (f) above). For w> 2 BeV and small Itf

we assume that

A(-)( ,t) + B(-)( ,t) = iF(-)(t) (37)
10

Yo is a constant which is probably of the order of 2 BeV, and a (t) is the

Regge trajectory of the P-isobar. F (-(t) can be determined from the shape

of the diffraction peak at 2 BwV, which we assume is approximated by eqn.(7)

above.

(108) G.F.Chew and S.C.Frautschi, Phys.Rev. Letters 7, 394 (1961) and

8, 41 ( 1962)



83.

First we consider the derivative terms in (36). By (37)

0( ,o)+ B (( ,0) = 4i( )o +Ft It---• =O }(,

For small ItO eqn(7) gives

Im fC()2-f (1-a) Yq R2( I + R2 t /8)

Hence

F It=o /F(-Io) = R8 C 0.07 (39)

where we use R = 0.74 as in § 4(i) (d) above. Taking the usual

estimate (10) 0 t I t=O -n 1/50N2 = 0.02, it is clear that the

term in bt in (38) is only important for large values of (

Since the whole contribution to 1 from Y > 2 BeV is small, we can ignore

the _b_• term in (38) without appreciable error (i.e., the sharpening of

the rAfraction peak is not important here).

From (37) and (1.34)

Im f(-) (L M F(-) (ox._.)ap (o) (40)

4nW Yo

where f () is the (c.m. system) forward scattering amplitude for the C-)

charge combination. By the optical theorem and (1.31) this gives

F(')(o) = (qL •C-)) J (41)

where qL is the lab. momentum and e (-). Ma_- 0+). Using

')(2BeV) = 1.3 mb.(cf i 4(i)(f) and Fig.2) we get F(W)(o) = 1.0.

Finally, using a e(o) : 0.5 in (38) we get

2 BeV

The errors in this result could be as large as 40%.

The other higb energy contributions to !are easily examined.
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By (4.13) N

dw' t 0.16

2 BeV

so the last term in (36) contributes -0.0006 to Y. In f2 (viii), we

saw that it is likely that A( Y,t) does not attain the unitary limit for

large Y . If that is so, Im B(')( 1',0) 12e(T) (W').

Thus,

1 ,oImB )1. 0) 1 C W-)
777 foi + 1 4n2M

2BeV 2BeV

Hence the Im B(-)(t" , 0) and --(-)(wj') terms in (36) almost cancel each

other. Even if this conjecture about A ()(% ,t) is not strictly valid,

the two integrals will be of the same order of magnitude and tend to

:ancel. We estimate their sum to be 0 + 0.0003.

The Higher i-N Resonances

Woolcock(73) evaluated Im A( ' ,O) and Im B() ' ,0) up

to 2 BeV by eqns.(32) and (33) using the methods already discussed in

ý 4(i). The predominant contributions come from the i-N resonances, and

the non-resonant amplitudes or background, was fitted by a smooth curve

in the manner indicated in §4(i). The results are shown in Fig. 8.

From Fig. 7 we see that Im B(')(w' ,0) is much larger near the ('4, J/)

resonance at 180 MeV than it is near the n--p D3/a and Fsl resonanc s at

600 MeV and 900 MeV respectively. However Fig. 8 shows that Im B(-) ( ',O)

is much larger near the 600 MeV and 900 MeV rescr.ances than it is near 180 MeV,

while Im A(-),(w',O) has roughly the same magnitude near all three

resonances.

This might suggest that the quantity I (eqn.(3 6 )) can only be

evaluated very roughly because of our somewhat poor knowledge of the

600 MeV and 900 MeV resonances. In fact the situation is not too bad

because (a) the denominator (W'2-1) in the first integral in (36) damps

down the effect of the higher resonances, (b) eqns(32) and (33) show that

in the range 600 MeV - 1.5 BeV there is considerable cancellation between

the contribution to ImA(')1 and Im B(-), from any partial wave .
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(The 900 4ev resonance contributes of the order of 0.005 to Y, whereas

thevalue of Y is about 0.08)

There are of course appreciable uncertainties in the moderately

high energy contributions to I. We must remember that, (i) the partial

expansions for Im A and Im B converge very slowly above 500 MeV

(cf § 3(iii) for estimates of the rate of convergence) (ii) there is no

adequate phase shift analysis of the experimental data at 600 MeV or
(109)above . Thus it is quite possible that a number of non-resonant partial

(109) See R. Omnes and G.Valladas (reference (SY) ) for some discussion

of the difficulties and uncertainties in such an analysis.

waves with high angular momentum contribute to Im A(-) and Im B(-)in a way

which is noticeably different from the smooth curve Woolcock used to fit the

non-resonant parts. For example, suppose that in an energy range of 100 MeV(-)
around 1.3 BeV, Im f(-) = 0.1/2. From (32) and (33) we see that this

contributes 0.0004 to Y. Lack of knowledge of these higher partial waves,

together with the uncertainty about the n+-p system in the 1.2 - 1.4 BeV

range (cf I 4(ii)(d) above) could give rise to an error in Y which we

estimate to be + 0.003.

The Result

Using the values in Fig. 7 and 8 and the very high energy

estimates given aboveI can be evaluated. Errors, in addition to those

mentioned, can also arise from the uncertainties in the predominant partial

wave amplitudes. We get the result
i = + 0.078 t 0.OO6

Inserting in (35) we get

(a -a2f 2  
- 0.078 + o.oo6 (43)(33-a13)-1)(• 2

It should be emphasized that we believe that the error t 0.006 includes

the various uncertainties in the values of Im A(-) and I B() at

moderately high energies due to the unknown role of higher partial wave

amplitudes.
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(vi) Rough Estimate of the p-wave Scattering Lengths

We now derive rough estimates of the p-wave scattering lengths

by using eqns (15), (30), (31) and (43). First it is necessary to have

a value for a 33 and for the present purpose we use the value obtained by

fitting eqn(5) to the experimental values of a33, given in Table 5, and

extrapolating to threshold. This gives(73)

a 3 3 = 0.220 ± 0.008 (44)

The error here allows for some deviation from the form (5) at very low

energies (No deviation from (5) is detected between 40 MeV and 190 MeV).

Using f 2 = 08 ! 0.003 (eqn.(15)) and eqns (30) and (44) we
get = 004+a31 -0.034- 0.011 (45)

Similarly eqn (43) gives

a13 = -0.022 ± 0.012
Finally, eqns (31) and (43) give

a = -0.095 1 0.016 (47)

These results for a 3 1, a 1 3 and a11 depend very littl• on

the s-wave i-N data (we have not used eqns (25) and (26) in deriving them).

They are obtained from dispersion relations whose predominant contributions

are given by the total croi.-sections 0'+ and the resonant amplitudes. In all

cases the contribution of the (4k, 3/) resonance is much the most important.

The errors quoted in (45), (46) and (47) are obtained by assuming

that the errors in (15), (30), (31) and (43) are independent. This is not

strictly true, but it should be a good approximation. This is because

the largest errors arise from f2 , a33 and eqn.( 4 3). The procedure

( f 4(i) ) for finding f2 is such that errors in f2 are largely independent

of errors in evaluation (43), and the same holds for a 3 3 .

It is worth noting that if we were to change the value of

by 4f 2, this wo~id alter the values of a31 and a13 by -2 A , and a 11 by

-4 Af2.

Comparison with Experiment

Little experimental evidence about the small p-wave phase

shifts at low entrgy is available. Barnes et al(110) have examined t+-p

(110) S.W.Barnes et al. Phys.Rev. 117, 226 and 238 ( 1960)
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scattering at 24.8, 31.5 and 41.5 MeV. Assuming a31 = a3 1 q3 their results

give a3 1 = -0.042 t 0.004. In fact the q3 dependence will not be quite

correct, and we suggest that these experiments give a 3 1 = -0.042 t 0.008.

Knapp and Kinsey1l1l) have investigated n-N scattering at 30.0 an(

(111) Knapp and Kinsey, Bulletin American Phys.Soc. No.5., p. 4 3 4 (19 6 1)

We are also indebted to Drs. Barnes and Kinsey for further information

about these experiments.

31.5 MeV. Again assumin6 a 3 1 = a 3 1 q3 their results give a 3 1 = -0.O38±0.O08

(solutions I and II). Clearly these values of a31 are in good agreement with

our result (45).

Now we look at the experimental results for a13 and all.

Barnes et al(110) results at 35.75 MeV give (assuming q3 dependence)(112)

a13= -0.06t 0.O4, a 1 1 = -0.02 ± 0.09. These mean values disagree with

eqn (31) which gives

a13 - a11 +0.073 1 0.010 (48)

Knapp and Kinsey (11)(again assuming q3 dependence)01z) get

(112) It is unlikely that the assumption of q3 dependence introduces any

large error at 30 MeV. The deviation from q3 dependence is discussed in

S5(iv) below.

a13 =+0.010 ! 0.019, a 1 1 = -0.169 ± 0.037 (Solution I)

a13 =-0.196 ± 0.020, a1 1 = +0.235 o 0.036 (Solution II)

Knapp and Kinsey suggest that Solution II is preferable, because it gives

the best agreement with their charge exchange (n- + p --)w 0 + n) data (113)

(113) The charge exchange data was not used in deriving their phase shifts.

Its only usu was in choosing between Solutions I and II.

at 31 MeV. Our result (48) rules out Solution II. Also (48) is not in

particularly good agreement with Solution I, but we note that even for

Solution I, a1 1 is surprisingly large.

The Liverpool experiments at 97 and 98 MeV give

(114) D. N. Edwards et al. Proc.Phys.Soc. 73, 8561(1959). Also D.N.Edwards

and T. Massam,private communications. We are indebted to these authors

for communicating their results.
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'31/q 3 = -0.029 t 0.002, '13/q 3 = -0.007 t 0.004, C1 1/q 3 = -0.024'0.002.

These results for '31 and a13 could be in good agreement with our results

(45) and (46) if we assume there is a small departure from the q3 dependence

by 95 MeV. The a result is only consistent with (47) if there is an

appreciable departure from q3 dependence. We shall see in § 5 below that

the improved CGLN calculations do indeed predict the correct departure from

q3 dependence to give good agreement between these Liverpool results and our

values of a31, a1 3 and a11 (eqns (45) (46) and (47)).

(vii) Woolcock's Evaluation of the Parameters

Woolcock( 7 3 ) used further relations and a more sophisticated

method to find the best values of the I parameters: f2 , the s-wave parameters

a, a3  C(+) C(), and the p-wave scattering lengths a2 T, 2 J. We briefly

describe the method and give the results (where necessary the input data

has been improved, and the results in eqn (49) are slightly different from

the original results (115))

(115) W.S.Woolcock, Proceedings Aix-en-Provence International Conference

on High Energy Physics Vol. I. p.459 (1961)

The following input data weru used.

(1) The value f 2 = 0.081 t 0.003 dttermined by the method of §4(i)

(eqn (15)).

(2) The value a1 - a3 = 0.254 t 0.012 from the Panofsky ratio(116)

(3) The forward dispersion relctions (2.6) fitted to 18 accurate experimental
2

values of D+ (&J) or D.(W) up to 220 MeV. These relations involve f , a1

and a 3 as parameterb to be dutcrmined. The dispersion integrals are

evaluated using thv known data for 0+.

(4) The sum rule (2.27). This involved f and (a -a 3) as parameters. The
errors in evaluating the integral are of course much larger here than in

the forward dispersion relations.

(5) 18 accurate experimental determinations of the s-wave phase shifts aI

or a3 (up to 45 MeV) are fitted to the equations (20) and (21) off4(ii).

Here a1, a3 C(+) C are the parameters which are determined.

(6) Eqns.(25) and (26) which relate a2 T,2J , and

(116) This is a refinement of the work in ref(75) using more recent

experimental data on photo-production and the Panofsky ratio.
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(7) The B(IL,o) relations, eqns (30) and (31) involvin, (a 2 T,3-a 2 T,1)

and f2. (T= h, Z)

(8) The fi (O,o) reltion (43) involving (a 3 3 -a 1 3 ) and f 2

(9) The value a = 0.220 t 0.008 (eqn.(44)) obtained by fitting eqn(5) to

the low energy values of a33 given in Table 3( 4 4(i))

(10) The value a3 1 = -0.038 + 0.008 from the analysis of Knapp and Kinsey(11

Each piece of the data was given the weight p = /1.2 where -

is the appropriate standard error. Using an error matrix method the values

obtained for the 9 parameters are

f2 = .081 0.002

a1 = 0.171 ± 0.005

a = -O.088 0 0.004

C) -0.094 _ 0.013
C(+)=-0.096 0.2+(9

a31 = -0.038 - 0.005

*133 = 0.215 -0.005
*a11 = -0.101 +0.007

*13= -0.029 + 0.005

Comments

The errors quoted for f2 and a 2 T,2J are smallur than those given

in § 4(i) and 4(vi) because of the extra independent data which has been use4

here (in particular the s-wavc data and thL forward scattering data).

Thurc are some small changes in the p- wave scattering lengths

a2T,2J compared with the values given in eqns (44) (45) (46) and (47). (These

changes are however well within tht errors given in eqns (44) - (47). The

main reason for thesem changes ar. eqns (25) and (26) which relate the s-wave

and p-wave parameters. C(+) and C(-) are determined from the s-wave

experimental data, and using these values given in (49) and f2 = 0.081,
eqa. yields 2 a 3 3 + a31 = 0.392. On the other hand eqns (44) and (45)

yield 2a33 + a31 - 0.405. Thus (25) requires that both a 3 3 and a31 are

reduced somewhat from the values given in (44) and (45). Similarly

inserting C(W), 0(-) and f 2 in (26) we get 2a 1 3 + a,, = -0.159. On the other
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hand eqns (46) and (47) give 2a + all =-0.140. So .(26) requires that

a13 and a11 become a little more negative than the values given by (46)

and (47).

The error in the experimental value of a33 in eqn (44) is large
(t 0.008) and we might start the arguments in § 4(vi) above from a33 = 0.215.

This would give a31 = -0.039 a 13 = -0.027, a11 = -0.100 instead of the

values in eqns (45) (46) (47). These values are close to those in (49).

It is therefore clear that in Woolcock's method of determining the parameters

the experimental value of a33 (item (9)) plays a small role. He is in effect

determining a33 from the dispersion relation (25) and the experimental low

energy s-wave data.

It might bc thought better to omit item (10) (i.e., the
experimental estimate of a 31) In fact omitting it causes hardly any change

in the results (49).

Woolc.:ck(73) points out that the consistency of the data is

strong support for the assumption thut theru is no arbitrary additive

constant in the sum rulQ or in the B+, A() and B() dispersion relations

(cfJ§ 2(iv) and 2(ix) above).

The low energy behaviour of the s-wave phase shifts obtained, (+) c(-)
by inserting the values for a 1 , a3 , C and C given by (49) in eqns.
(20) and (21) is in good agreement with our earlier parametric fit(117).
Here of course we deal with the phase shifts after the appropriate inner

Coulomb correction(117) has been made. For very low energies (up to 15 MeV)

(117) J.Hamilton and W.S.Woolcock. Phys.Rev. 118, 291 (1960). Sce

especially eqns(25) and thý. broken curves in Fig. 2 of that paper.

the s-wave phase shifts havw the form

sin 2 O 0.171 - 0.024 q al/q 0.171 - O.021q 2

2q 1/ .7 -2

sin 2a -0.088- 0.051 q2  o 3 -0.088 -0.052q 2  (50)

2 =3/q

These are in reasonable agreement with eqns.(27) of reference (45), but

(50) is an improved result and its derivation included some extra accurate

experimental results.
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(viii) Another Determination of tha p-wave Scattering Lengths

Another way of obtaining information about the p-wave

scattering lengths is provided by the analysis of the %-N partial wave amp-
(118)litudes based on the Mandelstam rupresentation( . The argument runs as

follows.

(118) J.Hamilton, P.Mtnotti, G.C.Oades and L.L.J.Vick, Phys.Rev.

(in the press)

The s-wave i-N -,mplitudes can b: analysed using the accurate information

we have for the s-wave n-11 scatturing up to 120 MeV, together with (a)

rough information on the s-wave i-N scattering at higher energies, (b)

information on the T = I, J = 2, %mplitude (as in § 4(i)(a) above),
2' 2'

(c) rough information on th, sm:ll p-wave amplitudes and the higher n-N

resonances.

Inserting this data in the dispersion relations for the

s-wave n-N amplitudes we can deduce the contribution of the T=O and T= 1 i-i

scattering to s-wave i-N scattering, .nd ultimately, obtain considerable

information about the T = 0 .nd T=1 T-it scattering.

Next it is assumed that the T=O n-i scattering obeys a simple

(relativistic) effective rqnge formula at low energies. This is merely done

to exclude any strange bchaviour of the T = i t-i phase shift, So at low

energies (such as SO changing sign at a low energy). Also it is assumed

that the T=1 i-i scattering is dominated by a resonance in the region

24 j t t 30).

Now the inform tion about the i-n interactions which was obtaine

from the s-wave t-N dispersion relations is fed into the dispersion
(1relations for tee p-wave i-N amplitudes. Then it appears that, in effect,

we can predict(120) the p-wave n-N phase shifts at low energies provided

we know their experimuntal vwlues accurately at one energy. For the latter

purpose the Liverpool results (110) at 97 - 98 MeV are used.

(119) For details see § 3(xi) of refrence (118)

(120) In practice, the low energy p-wave phase shifts deduced in j 5 below

are used, and the partial wave method suggests corrections to these

values at low energies.
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The results of this procedure are

a = -0.032
a*33 0.219

a11' -0.090 (51)
a 1 3 -0.016

The errors in each case are of the order of t 0.008. These values are

somewhat in disagreement with those in (49) but only in the case of a13 is

the difference very marked. It should be emphasized that these values in eqn.

(51) are obtained by a more complicated and lhas direct method than are the

values in eqn.(49)

(ix) Conclusions

The best values of f2 and the s-wave n-N parameters are given in
eqn.(49). Concerning the p-wave scattering lengths we must provisionally

accept the values given in eqn.(49) as being the best given at present by

using the experimental results and simple direct theoretical techniques. There

is, however, a possibility, as indicated in the preceding section, that with

improved information these values will move in the direction of those given

in eqn: (51).

The fact that such consistent results can be obtained by using a

variety of dispersion relations derived from (1.16) and (1.17) is very strong

evidence for the validity of the fixed momentum transfer dispersion relations

in n-N scattering. The fact that the results (51) are so close to those in

(49) is evidence for the validity ofthe Mandelstam relations as applied to

n-N partial wave amplitudes, at least for the values of the complex

variable s (eqn. (1.5)) lying within about 30 units from the physical

threshold s = 60, or from the crossed threshold s = 33.
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5. Calculation of the Partial Wave Amplitudes

The partial wave n-N amplitudes have been calculated by WoolcocJ73)(74)

at energies up to a few hundred MeV. The calculations use the (fixed

momentum transfer) dispersion relations (1.16) and (1.17) for A(Y,t) and

B( y,t) given by eqns (1.16), (1.17) and (2.36). In the case of A(+ ( yt)

a subtraction is necessary (cf.h 2(vi) and 2(viii)). The pion-nucleon

parameters which have been determined in § 4 are essential for these

calculations. As in 4 the dispersion integrals are approximated by a

careful evaluation of the contributions from the various %-N resonances

plus a rough idea of the background, or non-resonant, parts of the

absorptive terms.

Here we give a brief account of the method and discuss the results.

We also study the accuracy which can be achieved and we examine the

practical limitations of the method.

Wi) The Method

In I 3(v) we discussed the expansion of the partial wave amplitudes

f _+ in terms of the amplitudes f 1(=-- 0) and f2(9 = 0) and their derivatives

with respect to d2= * 2 (1-cosg). Using eqns (1.26), f and f2 are expressed

in terms of A(C ,t) and B(Cv,t) and these amplitudes satisfy the dispersion

relations (1.16), (1.17) and (2.36) (in the case of A (+)(,t)). This is

the CGLN method(2), but with considerable improvement in execution. CGIN

make the approximations: (a) there is no subtraction in the A W relation,

(b) in calculating s-wave amplitudes the d-wave corrections are ignored,

(c) the dispersion integrals are given by the (3/2' 3/2) resonance alone,

except in the case of the s-wave amplitudes where Im f is also included,o+

Cd) kinematical factors are expanded in powers of (IL/M), and only terms up

to order (N/M) are retained. (The CGLN results for p-waves are given in

eqn. (4.22)). Woolcock does not make the approximations (a), Wc) and (d).

In all cases he only ignores f-waves and higher. It will become clear

that these improvements are essential if reasonable accuracy is to be

achieved.

Woolcock uses eqns.(C.26), (1.35) and (1.36) to write
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Ref1( '0 = E +M IED(bS.L) - W,-(W-M) Re B(CO LI 0)/J4%

Re f2u'0) =E2WMLID(WL) +PI OL + (W+M)4 Re B( JJL, 04mn i i

where D(L L) is the forward scattering amplitude (in the lab. system).

This form has the advantage(121) that D+(&jL ) obey the dispersion relations

(2.6) in which the absorptive parts are-given by the total cross-sections

Or+( WL); also the absorptive parts Im B+( WL,O) in the relations for

Re B+(&JL, 0) have already been thoroughly investigated in § 4(i).

(121) A further advantage in using eqn(1) is that the subtraction

required by the presence of A(+) is made more accurately in the case

of D than it would be for A(+)itself.+

The first derivative functions are given by

1 f (W E + ReA'(W4L,O)+(-M) ReB'C(L,O)j
1ef (L'O) _2 - 7; 1 (2)+ WLO

Ref E-M 1 -Re A'(td,O) + (W+M)Re BIL(2)

2 L,0) = 2W ýL O BI'(bL'0)j

where the dash denotes differentiation with respect to 6 at d 2

The evaluation of the first derivative dispersion relations has already

been discussed in § 4 (v) above. The A(+)'(•LO) relation requires a
subtraction (cf. 4§ 2(vi), 2(viii) and eqns. (4.7), (4.8)). The
subtraction constant at threshold is given by the combination (a 13+2a 33)

of p-wave scattering lengths together with the value of BW(+(,O) (which

is given by the B() dispersion relation(122))

(122) Alternatively it is clear from eqn. (3.14) that the subtraction

constant for f(+),I L is given by (a + 2a3).
I L -e) i a13 +

Finally to include d-waves, it is necessary to use the second
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derivative functions.

Re f t•o0) =E+M 1 ReA(eI( 0= ERe A (WL,0) + (W-M)Re B (gv,0)

(3)

Re f 2 ( LW0) = E-M ' [ReA" WL,1) + (W+M) Re B"((L,3)

Typical dispersion relations used here are (with ji = 1)

1 ReB(+)"( W 16f 2  . 2dL U (d Im B(+ )
L(10) M(4) 2 + Vic (w

4(a Im B (+)( .0) - 2 d wl' Im B W(W ,O)

(to, ( +,O)W,, + •)4 •' +(L)3 (4)

2q__ 2 00 timAtooW,

1 1

+ A(+)"(A (&, 0 2q [did' A(+)" (W0 (5)'
SRe '4 L,7 = K+ 1- -2)' I2 4n'(O)q1(,• +62)

In the A +I relation the subtraction has only been made in the first

integral. K is the subtraction constant, and it can only be evaluated

from experimental knowledge of the (+) combination of d-wave phase shifts.

The need for subtraction in the AW1 rel-tion means that the system of

equations is not closed. Further, as we shall see, the present

experimental data is not good enough to determine K with accuracy.

The absorptive parts in the first integrands in eqns.like (4)

and (.5) are determined from the experimental data using

Vi6L0) ý 60 _E;_DI-(Wl )M fF; +S+' q q (6)

67 '4+3c)2 f+ M2 (54) 3 ( +L
q q
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B"dm~,) 60 tD4 6o 120
B"(W O -(E+M) fF, -r(J4M3E) fF%

q q q
(7)

+ 12  (4M+3E) f 420

Sq

where k'c is the c.m. pion energy, and q is the c.m. pion momentum.

The absorptive parts Im A" and ImB" are evaluated using the data on

the resonances and the optical model discussed inj§4(i) (d) and (c).

It is obvious by comparing eqns.(6) and (7) with (4.3) and (4.32),(4.33)

that the errors in Im A" and Im B" due to ignoring higher partial waves

are more serious than in the case of Im B, Im A' and ImB'. At the best
the determinations )f Re f (1aLO) and Re f"(WLO) are only rough, and

2 L'' ar2nyruh n
the information obtained about the d-waves is little more than qualitative.

(ii) Errors arising from Evaluation of the Dispersion Relations

Wherever it is practical Woolcock subtracts the dispersion relations.

For example the dispersion relations (2.6) give(73)
q2 q2 22

D(+) (+)() L t-- d(+ ') 01 +_LdorLf

n -- -- q D2_1 M d ' _ G( w2_ +2)

41
q , F 'o dw' 1 , a ('+'') + o'(+)( ,) + + (1 ot o

2n2  q' i L - 2qL L q 2  o

+ p f d ,w' ,-'W (( '
f~w ' q13 W 12_ 12 (8)

where is a constant and I4 WJ < Alzo (t = seco 0 , and "LI q, I
WO0 44.0 0

W', q' are lab. values. The form of the first integral inside the square

bracket ensures that there is no difficulty for &1'=1.

Similarly the B(+) r~lation can be written in the form

Re B(+)( W 4 f L + 2L d d l (m'BI•"( LO) =- 2 4w 42 ' I ()

+ 2  ILWqo+ L .d Im B (+)(,.O)
itq 12 ( ( 01 2 _ 4L 2 ( 9 )
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The subtraction terms in eqns.( 8 ) and (9) are written in integral form.

They are related to the p-wave scattering lengths and C(+) by eqn.(4.23)

and *qns. similar to (4.28) and (4.29). The integral form of the subtraction

term in eqn.(8) is the most accurate value of this term and its value,

deduced from (4.25) and (4.26) is used. For the subtraction term in eqn.

(9) the p-wave scattering lengths given by (4.49) are used.

The advantage of using subtracted dispersion relations is that for

low energies (up to about 100 MeV) the errors in the partial wave amplitudes

relative to the scattering lengths determined in j 4 will be small. Also,

any errors arising from the evaluation of the principal value integrals are

reduced considerably. The disadvantage of this method is that at higher

energies the errors arising from the subtracted terms themselves can become

large.

The effect of subtractions in reducing errors in evaluating the

dispersion integrals is important here in connection with contributions

from the n-N resonances above 500 MeV. There are further factors which

tend to reduce the errors in these contributions. For example, Ones

and Valladas(85) suggest that at the 900 MeV resonance there may be an

appreciable amount of D amplitude in addition to the resonant Fs4

amplitude. From eqns.( 4 .32) and (4.33) it is seen that the numerical

and kinematic factors in the expansion of Im A' and Im B' already reduce

the size of the Ds/, contributions relative to the F$% contributions.

Eqns.(6) and (7) above show that the same is true for Im A" and Im B".

At 600 MeV Omnes and Valladas(85) suggest that in addition to the resonant

D 3 amplitude there is some P3,/ amplitude and only a small amount of DSg

amplitude. Again eqns( 4 .32),( 4 .33), (6) and (7) show that this situation

is favourable for accurate calculations. (For the amplitudes D and B the

absorptive parts are the total cross-sections 0 + and Im B +. The values

of V+ are well known and the accurate evaluation of Im B& has been discussed

in f4(i)). The result of all this is that the dominant errors in

calculating the dispersion relations at least up to 350 MeV, will come from

the subtraction terms.

We now make rough estimates of the probable errors in Woolcock's

evaluation of the dispersion relations. First consider Re fW ( WLO)

and Re f(+)((4 0). The subtraction term in eqn.(8) for D (+() is2 L
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evaluated from (4.25) and (4.26). This gives qL2 (0.133 t 0.004). This

leads to an error t qL2 (o.004) in Re fl(+)(WLO) (relative to Re f1 W+(1,0))

and a very small error in Re f 2(+)W(L,O).

The second term on the right of eqn.(9) for Re B is approximately

"L' (a11-a13 + 2a31 - 2a33). By eqn. (4.49) this gives -W L(0.387+0.O7).

CThe values given by eqn. (4.52), or (4.44) - (4.47), or (4.51), differ

little from this value]. By (1.31) and (1.32)

WL - (W - M) = (E-M)W/M =f qLq/M

on using E-M ý:4 q /2M (qL and q are the lab. and c.m. pion momenta).

Thus Re B+ contributes an error in Re f(+)(t4) (relative to++ IL W
Re f1  (19,0) ) of - CuLqLq(0.0035). Similarly the error in Re f2  (IUL10)

is ! ±q 2(0.0035).
The total errors in Re fW(+)(0)L,O) (relative to Ref (+)(1,0) ) at

100 MeV and 200 MeV are thus estimated to be t 0.015 and + 0.05 respectively.
In each case the error from Re B( is dominant. The errors in Ref(+)(W.L0)

at 100 MeV and 200 MeV are t q2 (0.OO6) and t q2 (0.008) respectively.

Between 200 MeV and 350 MeV, DG) (WL) can be calculated more accurately

from eqns.(2.6) than from eqn.(8). Since the errors in ReB(+ are dominant

this is little help. At 300 MeV the errors in Re f(+) 0
R e f s +it l 2 1 3rL , O ) a n d

Re f2+(L,O) are t 0.08 and t q (0.011) respectively.

In the (-) case the subtraction term in the equation for DI'0&O
is GqL2(-0.033 - 0.003). The subtraction term in the dispersion relatiin

for Re B(-)/4n14 is given by (4.30) and (4.31). It is 3 (0.14510.004).

Thus the error in Re f(")(wL,O) is t WLq2 (0.003) and the error in

Re f (w( L, 0) is t q2(0.002). At 100 MeV and 200 MeV thu errors in

Re f)(IJuL 0) are thus + 0.010 and t 0.035 respectively. Between 200 MeV

and 350 MeV we can calculate D(')( W L) more accurately from eqns.(2. 6 ),

and we estimate that the error in Re f1 (-)(wL,O) at 300 MeV is' 0.04.

The errors in the first derivative relations are more difficult to

estimate. Using the discussion in §4(v) and eqn(2), we estimate that the

errors in Re f 1 (+),,O) and Re f1(-) (WJL,O) (relative to their values
at WL=l) are ! 0.003 q2 and t 0.003(OL-I) respectively. For Re f2 G4L'O)

the errors are ± 0.001 q2. The errors in the second derivative relations

are closely related to the problem of the higher partial waves, and they will
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be discussed below.

Errors Produced in Re 81 and Re s3

The effect of these errors on the calculation of the s-wave amplitudes

at 100 4eV and above is serious. We write S2T f() (T= 1 / 3pand

use (3.15). Consider the errors due to Re f(1  which are dominant. They

give errors of t 0.025 and + 0.018 in Re sI and Re s3 respectively at 100

MeV. In fact we shall see in § 5(iv) below that the difference between the

predicted values of Re sI and Re s3 at 100 MeV and accurate experimental

values is very small (eqns.(lia) and (12b) below). This suggests that the

errors given above for Re f 1 (taL,0) are too large. This could be

partly due to the crude method used to estimate the errors, and the fact

that we have switched back and forth between n- - p , (+)and isospin

integrals and amplitudes.

In view of this and the good agreement of the s-wave predictiens at

100 MeV it is realistic to reduce(123) the errors quoted for Re f (1 )by a

factor 3. Since the B(-) integrals give+the largest error in Re f 2

we shall also reduce the errors in Re f2(-)by a factor 3.

(123) Certain adjustments are made above 200 MeV.

Thus the Re f+1 W errors at 100 MeV, 200 MeV and 300 MeV become + 0.005,

-0.017 and + 0.04. Corresponding Re f 2 errors are - 2 (0.002),

Sq2 (0.003) and - q2(0.004). For Re f we have at 100 MeV, 200 MeV+ ± ± 0.02,1(-)+2
and 300 1eV, + 0.003, + m. , +- 0.02, and the Re f2 error is ! q 2(0.001)
The Re f I and Re f2  errors remain as above.

(iii) Errors arising from Higher Partial Waves

(a) F-wave corrections

Partial waves with 60 are neglected in this treatment. The

corrections due to f-wave an be seen by inserting f-waves in eqn (3.14)

and solving to get the corrections to (3.15). This gives the following

expressions for the partial wave amplitudes,
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f 2. " ( q4/60) flIt (0) - 7 f3+

f2- = -(q 2/ 6 ) f2 (0) + (q 4/60) fl(0) - 5f3 - 2f3+

fl+ ="(q2 /6)f;(O) - (q4/ 1 2 )f"(O) + f + 20 f (10)
1+q 3- 3+ (0

fi-= f 2(0) -(q2/6)f 1 (0) + (q2/2)f 2 (O)-(q /12)f1 (0) + 1Of 3 + 11f3+2

f =fl(0) + (q 2/ 2)f;(0) - (q2 / 6 )f 2
1 (O) +(q4 / 6 )f 1 (0) - 5f 3 -30f 3

(CT) M fCT/2 .(T), 2
We shall use the notation a = f(T) = f(T)/q 12T,3= 1+

d(r). 4  2'fr•q4o+ P2T,1 40, )lq2
2T,3 = f2- /q ' d2 T,5 = 2+ Tq •

Little is known about f-wave phase shifts, so only rough estimates can

be given for the corrections they produce. The analysis by Foote et al(12 4 )

of n - p scattering at 310 Mell suggests that the f-wave phase shifts could

well be as large as +0.50 at 310 MeV (Solution SPDFI). Such f-waves give

corrections 0.15 to Re s2T; 0.025 to Re P2T,2J; 0.002 to Re d2 T,2J at 310

MeV. Assuming that the f-wave phase shifts vary like q7 below 310 MeV,

the corresponding corrections at 200 MeV are 0.03 (Re 82T ); 0.08

(Re P2T,2J); 0 001 (Re d2 T, 2 J). At 100 MeV they are 0.004 (Re 82T);

0.002(Re p2T,2J); 0.0006(Re d2 T, 2J).

It will be seen that this f-wave correction to the s-wave amplitudes

is the same size as the estimated value of these amplitudes at 310 MeV

(see below), and is about 25% of the s-wave amplitudes at 200 MeV.

Also at 310 MeV the f-wave correction is larger than the estimated size of

several of the p-wave amplitudes. Mcreover the f-wave phase shifts might
05at30 e( 124)be larger than 0.5 at 310 MeV( , and it is also far from certain that

g-waves cause no trouble (cf.eqn (10)).

Clearly, unless there are special reasons for believing that in

certain cases they are small, the f-wave corrections make the calculations

valueless at moderate energies and above. This is merely a practical

example of the considerations given in j 3(v). Because of the poor

convergence of the series(125) in eqn (3.15), it is not expected that the

improved CGLN method of calculating partial wave amplitudes will he

(125) See f 3(v) for further discussion of these points.
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accurate for energies above 120 MeV, and it may be useless above 150 MeV.

We shall examine below the exceptions to this rule in the case of the (-)

charge combination and also for the 2)amplitude.

(b) D-waves

The subtraction constant K in the dispersion relation (5) for

AW (+)"(L,0) has to be determined from the experimental information

on the d-waves at low energy. By eqn.( 6 ), if we ignore f-waves,

760 W+ RM ( (+)

q

and

Ref =1+
ReD(• =q( sin( 2 1,5) + 2 sin(2 '3,))

Foote et al(124 )(SPDFI) find j = -4.9°t 2.20 at 310 MeV, and the analysis
(126) .350+of Zinov et al suggests that f15 = 1.5° t 2.00 at 310 MeV. From these

values, using eqn(11), the subtraction constant K in eqn.(5) can be

determined.

(126) V.G.Zinov et al, Soviet Phys. JETP 11, 1016, (1960)

Unfortunately the errors here are considerable. First, if the

f-wave phase shifts at 310 MeV are of the order of 0.50 as suggested by

the analysis of Foote et al (124), eqn.(6) shows that they could cause

corrections in Re A (+)(310 MeV,O)/4n which are as large as the d-wave

contribution given by eqn(11). Further, eqn.(6) suggests that the g-wave

contribution may also be important. This is in line with the discussion

of § 3(iii) and (iv) which indicates that the convergence of the series

(6) for Re A(+' is slow at 310 MeV.

Next, the errors in the d-wave phase shifts at 310 MeV are large.

The values quoted above give Re f(+) (310 MeV) = -0.021t 0.015. Suppose

there is an error t in our estimate ýf Re f2+ at 310 MeV. By eqnIO)

this will give rise to an error + 106( / 2  4 in Re fo+ -,L) and an
o 1 in Re f(+) ) 2 17) 0

error 5 q /(2.17f Lq 1. As usual q is the c.m. momentum

and the unit is 140 MeV/c. With 4 = 0.015 the errors in Re f(+) are
0+± 0.011, 0.06 and ± 0.15 at 100 MeV, 200 MeV and 300 MeV respectively.

For Re f li+)*jL)/q2 the errors are t 0.004, ! 0.010 and ! 0.016 at 100 MeV,
200 MeV and 300 MeV respectively.
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The other errors in the evaluation of relations (4) and (5) are

far less important than the errors in K. In particular the contributions

from the integrals over Im A(+) and Im B +)' are small, and moderate

sized fractional errors in the evaluation of these terms can be tolerated.

It should be noted that by eqn.(3) the error in Re f(+)11 W
2 LO

caused by an error in the subtraction constant K is much smaller than the
error produced in Re f (+) because of the factor(E-M)/2W in the second

1 W of W i(
equation of (3). The ratio of the error in Re f 2 to that in Re f

is q2/4M = q2/18o' Thus even at 300 MeV errors in K are unimportant for

Re f 2 (+) and threfore they are unimportant for Re(f (+)- f(4) ) ,
an2h.rfr 1+ 1-

(iv) Results up to 120 MeV -A(

The most serious of the errors we havt. discussed is that in 5Ciii)(a)

above. Due to the difficulty with higher partial waves and the poor

convergence or lack of convergence of eqns.(10), the improved CGLN method

for predicting all the n-N s- and p-wave phase shifts from the dispersion

relations cannot be trusted at energies much above 120 MeV. On the other

hand the errors appear to be reasonably small ul to around 100 MeV,

and in that r~gion the results of the method should be reliable.

The calculations were made using the n-N parameters given in eqn(4.49).

The results for Re sl, Re 3 and Re P2T, 2J are shown in Figs. 9, 10, and

11 (only those parts of the plots up to 120 MeV are relevant here). We

shall compare the predictions with the accurate Liverpool data(7?7)(11 4 )

at 97/98 MeV. The errors in the theoretical values are those we have

estimated above in •§5(ii) and (iii).

S-waves

For the s-waves at 100 MeV the theoretical values are

Re sI = 0.129 + 0.015, Re s3 = -0.133 0 0.014 (12a)

The experimental values at 97/98 MeV are

Re sI = 0.123 ± 0.006, Re s3 = -0.135 ± 0.003 (12b)

These are in good agreement, and there is also good agreement with the

accurate experimental values at lower energies. The curves in Figs.9 and

10 show that (up to 100 MaV) the dispersion relations predict the steady

decrease in Re s and Re s3 from the threshold values ai1= 0.171 t 0.005,

and a 3 = -0.088 - 0.004. This decrease is of course already well known from
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the semi-phenomenological fits to the data which were discussed in 14(ii).

The part of the total errors in these s-wave amplitudes at 100 MeV arising

from neglect of the f-waves (I 5(iii)(a)) and the uncertainty in K

(I 5(iii) (b)) are - 0.012 for Re s1 and Re s3.

P-Waves

At 100 MeV the calculated values are

Re p1 1 = -0.023 + 0.006 Re p3 1 = -0.017 + 0.005

Re p1 3  -0-.003 + 0.005 Re P3 3 = 0.250 + 0.005 (13a)

and the experimental results at 97/98 MeV are(77) (114)

Re p11 = -0.024 - 0.004, Re P3 1 = -0.027 + 0.002

Re p1 3 = -0.008 o 0.004, Re P3 3 = 0.246 + 0.003 (13b)

There is good agreement here between the experimental and calculated values,

except in the case of Re P3 1. A recent experiment at 120 NeV(127) gives

Re P3 1 = -0.023 t 0.006, Re p3 3 = 0.228 t 0.006. From Fig. 11 it is
seen that these values are in reasonably good agreement with the

predicted values, but again there is a suggestion that the calculated

(127) A Loria et al, Nuovo Cimento 22, 820 (1961). We use their

final values a31 = -2.60P + 0.69°, (33 = 31.67° + 1.010.

value of Re P3 1 is a little too small. The largest part of the errors

in Re pl and Re p3 1 at 100 MeV is due to the error in K which was

discussed in 5(11). Probably this error actually accounts for the

small discrepancy in Re P3 1 near 100 MeV.

It should be emphasized that these results reconcile the

experimental values of Re P2T 2J near 100 MeV with their threshold values

2T as given in § 4. For Re P11 in particular the 100 MeV and

threshold values are very different. The results for the p33 amplitude

are in good agreement with the experimental values given in 4(i)(a)

above (up to 120 MeV). This is merely a further proof of the validity of

the fixed momentum transfer dispersion relations.
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D-Waves

Because of the uncertainties in the subtraction constant K

( • 5(iii) (b)) no useful and reliable results can be deduced for the

individual d-waves. We shall see below that there are useful predictions

for certain combinations of the d-wave amplitudes.

(v) The (-) Amplitudes

In § 3(v) we showed th-ft the amplitudes for the (-) charge

combination are a special case. Assuming that there is no appreciable

T=1 n-n interaction in the range 4.A2 Z t -. 152 ( and the experimental

investigations of T=1 w-n interactions appear to bear this out(65)), then

in the case of the (-) amplitudes the eqns.(3.15) should converge well up

to 250 MeV, and should also give useful results up to somewhat higher

energies (say 350 MeV).

This means that for the (-) amplitudes the f-wave corrections are

expected to be smnll up to around 300 MeV. There is a further reason why

the improved CGLN procedure should work much better in the (-) case than

in the (+) case up to these energies. We saw inf 5(iii)(b) that no

subtraction constant is required in the A(-) dispersion relation, and

therefore the large errors arising from uncertain experimental information

about d-waves are avoided.

The remaining errors in the A() and B dispersion relations

should not be v.ry important, 7nd it is possible to make predictions about

the (-) combinations of d-wave amplitudes. Unfortunately the results do

not agree with the few experimental values which are available, and we do

not reproduce them. Any error in the d-wave results will cause errors in

the other (-) combination partial wave predicitions, and the s-wave (-)

amplitudes at the higher energies are particularly subject to this type of

error (it is readily seen from f5(iii)(b) how this comes about).

The results for Re (s -S Re (p11-P31) and Re (P33-P13) are

shown in Figs. 12, 13, and 14 for energies up to 350 MeV. Except where
(128)

otherwise stated the values of the parameters in eqn.( 4 . 4 9) are used

We shall briefly discuss the results.

(128) There are some small changes from Woolcock's original values given

in references (73) and (74). These are due to the fact that in preparing

4 above the parameters were critically examined and reassessed, giving the
values in eqn(4.49) above. The assessant of the errors in the
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phase shift predictions in § 5 of the present article, is quite new.

Re(s 1-3 )

The predicted values are shown in Fig. 12 together with the
(129) (69)

predictions of Hohler and Dietz and of Finn . We compare

(129) G. Hohler and K. Dietz, ZS fur Phys. 160, 453 (1960)

1Mie predicted values with the experimental results at 224 MeV and

31.0 MeV. These zppear to be reasonably accurate experimental results. At

224 MeV the experiments give al = 14.80 ' 3"50, a 3 = -15.5P t 3.5, so

Re (s 1 -s 3 ) = 0.282 t 0.039 (14a)

The predicted result is

Re (s1-s3) = 0.269 0.050 (14b)

(130) J. Deahl et al Phys.Rev. 124, 1987 (1961)

An estimate of the f-wave and d-wave error is included in (14b)(1 3 1!

At 310 MeV Foote et al(124) give Oa = -17.2° 0 2.60 (SPDFI).

From the several results of Zinov et al( 26) we infer that at 310 MeV
= 24.00 + 30 (Solution aSPD). These give

Re(s 1-s 3 ) = 0.301t 0.020 (15a)

The predicted value (131) is

Re (al-83) = 0.27 ± 0.07 (15b)

(131) That is we take the error in Re f(-)(LO), to be ± (0.001) up111 LThatO

to 200 MeV and t 0.013 at 300 MeV; the extra error due to d-waves is

discussed in the section on d(-) solutions below.

The agreement between the experimental and predicted values is

reasonably good, particularly at 224 MeV. In judging the accuracy of the

310 MeV prediction it is worth noting that an error of t 1.00 in the

predicted value of 15 " 35) (where 415 and S35 are d-wave phase
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shifts) would give an additional error of t 0.08 in (15b)(1 3 2 ). The

agreement in eqns (14) and eqns(15) supports the argument we gave at the

beginning of this section for believing that the f-wave (and d-wave)

errors are reasonably small in the (-) case.

We now make two further deductions.

(a) The bSpD solution of Zinov et al(126) gives al < 0 between 240 MeV

and 333 MeV. Since there is no doubt that a3 < -100 in this region,

the bs•D solution is ruled out, even if we allow the full error in

Re f (( L O ), i.e., t 0.12 in Re(sl-S ) at 300 MeV as in § 5(ii) above.
1 L'O' 13

(132) We shall show below that 1 0.08 is the maximum extra error we

would expect in (15b) due to errors in the d-wave calculations.

(b) In Fig. 10 the broken curve from 120 MeV to 350 MeV is a smooth

continuation of the predicted value of Re s3 drawn to pass through the
(124)310 MeV experimental value . Now using the values of Re(sl-S3) from

Fig.12., the values of Re s, between 120 MeV and 350 MeV are found. These

are shown in Fig. 9 by the broken curve. Although these values of Re s

are necessarily somewhat rough, it would be valuable to test them by

precision experiments in the 250 MeV - 350 MeV region.

Re (pl -p•3 1 )

The predicted values are shown by the solid curve in Fig. 13

together with a few accurate experimental values. There is good agreement

with the experimental values. Typical results are those at 224 MeV and

310 MeV. At 224 MeV the experimental results are(130) = 5 9  + 50

a3 1 = -2.10 + 5.50, giving

Re( p1 1-P 3 1) = 0.024 ! O.018 (1 6 a)

The predicted value is

Re( p1 1 -P 3 1) = 0.015 1 0.00'4 (16b)

At 310 MeV Foote et al(124) gave a31 = -2.9 - 4.00 and the results

of Zinov et al(126 ) suggest a11 r 8.00 +- 4.00 ( a SPD solution). This

gives Re(p 1 1 -p, 1 ) = 0.O18 ± 0.008 (17a)
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The predicted value is

Re(pll-p 31) = 0.018 t 0.006 (17b)

In accordance with our general assumption about the (-) amplitudes,

the d-wave and f-wave errors are taken to be small in (16b) and (17b).

These calculations use the parameter values in (4.49). So

all - a3 1 = -0.063. If instead we used the value a - a3 1 = -0.0o6 which
is well within the errors given in (4.49) the predicted values would lie

on the broken curve in Fig. 13. The latter curve gives somewhat better

agreement with the 97/98 MeV result, and gives 0.018 t 0.004 at 224 MeV,

and 0.02% 1 0.006 at 310 MeV, instead of the values in eqns. (16b) and

(17b).

Again the assumption that the d-wave and f-wave corrections are

unimportant for the (-) amplitude, at least up to 300 MeV, appears to be

justified. On the basis of the predicted values of Re(p 1 1 - p3 1 ) further

conclusions can be drawn (73).

(a) The bSpD solution of Zinov et al(126) gives Re(p 1 1 -P 3 1) < 0 between

240 MeV and 330 MeV. This is definitely excluded by the predicted values.

(b) The experimental results between 224 MeV and 333 MeV show that '31 is

negative, and it appears to be butween -20 and -40 over that range. Then

Figs. 11 and 13 suggest that all changes sign below 200 MeV, and attains

positive values between 50 and 80 in the range 220 MeV to 330 MeV.

Re(p33 -p13)

The predicted values (based on the parameters in (4.49)) are shown

in Fig. 14. The errors are much the same as in the case of Re(p 1 1 -p 31 ) with

one exception. Just above the resonance (200 MeV - 250 MeV) there is some

uncertainty about the value of a3 3 , and this can have an appreciable effect

on the dispersion integrals.

The experimental value(130) of a33 at 224 MeV (a33 = 112.30 ! 3.00)
combined with the predicted value of Re(p 3 3 - p13 ) suggests that a 1 is

positive and equals a few degrees. The experimental value(.... of a 1
at 224 MeV is O 0 2.00, so there is a small discrepancy here. At 310 MeV

there is agreemant to within the errors. The experimental value(124)of

,33 = 135.0' ± 0.60 plus the predicted value of Re(p 3 3 .pl 3 ) gives
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2. 0 + (1026)
a1 3= 2.30 + 2.00. The values of Zinov et al suggest that

a13 = 2.00 ! 2.00.

It is clear that again the (-) relation is working well up to about

300 MeV, and it appears that the phase shift a differs from zero by

no more than 20 from 200 MeV up to around 300 MeV. (Again the solution

bspD of Zinov et al(126 ) is excluded since it gives values of a 1 3 between
70 and 150 over the range 240 MeV to 333 MeV).

The d(-) Solutions

There is not sufficient reliable experimental information to

compare with the predicted values for the (-) combinations of amplitudes.

The good agreement of Re(p 1 1 - p3 1 ) and Re(p 3 3 - P13) with the experimental

values in the 300 MeV region indicates that the extra error in the

predicted value of Re(s 1 - s3) at 310 MKV (eqn (15b)) arising from d-wave

errors cannot exceed + 0.08 (This is seen from eqn.(10), remembering

that Re(p 1 1 - P 3 1 ) and Re(p 3 3 -P 13 ) are not in error by more than 0.008 at

310 MeV). In evaluating (15b) we allowed t 0.06 for this extra error,

and a corresponding value in (14b).

(vi) The f 2 (W)Amplitudes

An additional piece of information, which is fairly reliable up to

about 230 MeV, can be obtained from the f( 2) (+),O)
2 '~L' ~ and1

amplitudes. By eqn(10)

f- - f 1+ = f2 (0) + (q 2/2) f2 (0) + 1(f3- f 3+) +

2 (18)
f2- 2+-(q/6) f 2 (°) - 5(f 3 - f3+) +. ........

There is reason to expect that the effects of d-wave errors and of

corrections due to f-waves and higher amplitudes are not so important in the

(+) case of eqns.(18) as thuy are in the original equations (10). This

is seen by considering the eqn (cf.(1.26)):

Re f 2 (W•L, - 'M 1 -ReA(+)(LO) + (W+M) Re B(+)(WO)ý (18a)

and equation (2). Estimates show that at most energies up to 250 MeV

(W+M) Re B( is much larger than Re A W+, and (W+M) Re B W is much

larger than Re A(+). Thus up to 250 MeV the predominant contributions

to Re f 2 W and Re f come from the B( terms.



109.

Now we look at the arguments in § 3(v) concerning the convergence

of series like eqns(3.15) -and (18). The convergence is governed by the

value of y0 (s), tLe radius of convergence in the cos 9 -plane for the

real parts of the amplitudes (cf. Table 2). To get good convergence we

required a value of y0 (s) close to 3, or greater. The value of y0 (s)

is determined by the nearest singularity in the channel %+n+ N+R.

Since the A(0) terms in eqns.(2) and (18 a) are small below 250 MeV,

we assume that the higher partial wave corrections which they produce

in eqn (18) can be ignored. Now the A(+) amplitude is related to the T=O,

J=O, 2, . . . i - states, but the B(W amplitude is related to the T=O,

J=2,. .. n-n states(133). It is knownQ8) that the T=0, J=O n-x

(133) See, for example, eqn (36) of J.Hamilton and T.D.Spearman,

Annals of Phys. 12, 172 (1961)

interaction is strong for low values of t ( t=5 or 6p 2 ), but the results

of Atkinson(134) suggest that the T=O, J=2, n-n phase shift So does not

(134) D. Atkinson, Phys.Rev. (In the press). It should be pointed out

that Atkinson's results do not depend on any data derived from the f+)"

amplitudes by the method of the present section.

reach 200 until t 2 124. If we ignore the T=O, J=2 n-n interaction

when 62 C 200, then the naarest singularity of Re B(+)is given by cos 9

= I + 6/q2 (cf. eqn.(3.12)). v

With these approximations the value of yo(a) for the Re f2

amplitude is 4.0 for 'L= 150 MeV and 2.5 for = 250 MeV. Thus up to

about 250 M. the f-wave (and higher) corrections to eqns.(18) for the (+)

charge coribination should be small. Further advantages of eqns.(18) are:

(a) double derivative rvlations do not appear, so the main source of d-wave

error is removed, (b) the factor (E-M)/2W tends to suppress the errors in

evaluating the dispersion relations (1) and (2), as we saw in f5(ii).
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.(+)
Results for Re f2

We only give some of the results for the p-wave case (ie. the

first eqn. in (18)). At 200 MeV the predicted value is

Re (p11 + 2P31 - p13 - 2 p3 3 ) = -0.019 - 0.008 (19)

The error here is only that discussed i45 (ii) for the evaluation

of the various dispersion integrals. If it were not for the special

arguments given above we would have to ascribe a much larger error to

allow for f-wave effects (this can be seen from the estimates given in

§5(iii)(a)). Using experimental values(135) we have Re p31 = -0.0106 0.004.
Combining (19) with the predicted values Re(p 1 1 - p3 1 ) = 0.012 t 0.003,

Re(p 3 3 - P1 3 ) = -0.010 t 0.002, we find Re P3 3 = -0.003 ± 0.004, and

Re P13 = 0.007 - 0.006. These give values of a33 and a13 which are in

good agreement with the experimental data.

At 224 MeV the predicted value is

Re(p 11 + 2P3 1 - P13 -2P 3 3 ) = 0.025 t 0.008 (20a)

and the experimental value(130) is

Re(p 1 1 + 2P 3 1 - p.. - 2P3 3 ) = 0.028 - 0.020 (20b)

Again the agreement is good. However at 310 MeV the predicted value is(136 )

Re(p 1 1 + 2p3 1 - P1 3 - 2P 3 3 ) 0.063 t 0.012 (21a)

and the experimental value is(124 )(12 6 )

Re (P11 + 2P3 1 - P 1 3 - 2P3 3 ) = 0.103 ! 0.015 (21b)

Comparing (21a) and (21b) it appears that the f 2 (+ method is breaking down

at 310 MeV. Our general arguments at the beginning of the present section

about the approximations involved in the f4+) method would lead us to expect

the method to fail above 250 MeV.

Below 250 MeY we can try to use these predictions to improve our

knowledge of the small p-wave amplitudes. There iL no contradiction with

(136) Here f-wave errors have been ignored.
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the results discussed in § 5(v) above, but unfortunately the errors

on the predicted values are appreciable and they give nothing new.

(vii) Summary

The main limitation of the improved CGOL method is the failure

of eqns.(3.15) to converge at moderate or high energies. A further,

and related, limitation is caused by the (d-wave) subtraction constant

in the A(+)' relation. The convergence problem becomes serious for

the complete set of amplitudes around lab. energy 150 MeV. and it can be

traced to the effects of the strong low energy T=O, J=O n-% interaction

on the A( amplitude. We saw that the complete set of amplitudes gave good

s- and p-wave predictions up to around 120 MeV(§ 5(iv)). At higher
energies they do in fact go wrong.

The B(+) amplitude is not affected by the T=O, J=O n-w interaction,

but here the T=O, J=2 n-n interaction determines the convergence of eqns.
like (3.15). It is estimated that the breakdown now occurs in the region

250 - 300 MeV lab. pion energy. Using this and another approximation, the

COLN method can be applied to the f(+) amplitude, and the subtraction

problem does not appear here. The results (f5(vi)) are good up to 224
MeV, but by 310 MeV they have gone badly wrong, as we would expect.

For the (-) amplitudes the situation is very favourable. There is
no subtraction problem and the convergence of eqns(3.15) is governed by

the T=1 J=1 n-n interaction. The latter appears to be small up to

comparatively high n-it cnergies, and as a result the improved CGIO method

works well for the (-) amplitudes up to at least 310 MeV.

The results of applying these various cases are: (a) complete and

accurate s- and p-wave predictions up to 120 MeV, (b) in the range 120 MeV-

220 MeV, by combining thepredictione with a .limited amount of accurate

experimental data, we can obtain a fairly accurate idea of the s- and

p-waves, (c) in the range 220 MeV - 310 MeV we get a fair idea about the

p-wave behaviour but only a very rough idea about the s-wave amplitudes.



APPFXDIX A

Theorem D and Related Formulae

Let odS f(x)
h(y) = P (x-) x W

1 x (x-y)

and assume f(x) obeys c-ýnditions (i) (ii) (ii) stated in J2(iii).

Divide the range of integration into (i, 6 ), (b ,*), (*, y - 4 )

(y -6 ,, y+6), (y+j , 2y)(2y, 00) where 4 is large and i small.

Call the corresponding contributions to the integral (A.1), bl1 h2 ,.l. h6

respectively. Then

1
h 1f(x) () J 2dx

Y -Axx

where

A 4 y, by the second mean value theorem. By taking 6 (and

therefore ) sufficiently large, the integral on the right can be

made as small as we wish (condition (i))

h 3 f(x)dx o 4 dx (condition (ii))

= y'• o (•n• -An& )
.1 ny

Ih4=p f~yt A dt: y') f(y+t)-f(Y-t)t dtl 0(y'+)

I~tfy + Qt)
y-)i 2f(+t dt aI4 S yA (condition (111)) 04 04 1)

0
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Lh~ dx - condition (ii))

-w ( Cny-n

6 fx' d. =() 2 f(x) dx where 7 2y

by the second mean value theorem.

Choose first 6 large and 6 small, and then y large enough.

Now consider the special case of eqn. (1) when f(x) = 1/Xnx
and the lower limit of integration is x = 2. Subdivide the range of
integration into (2, d ), (A ,Y•y), (Yr, y -S ), (y -S , y+S ),
(y + , 2y),(2y,)oo), and call the corresponding contributions hl, ... h6 .

Treat h1 as before. For h2 use the second mean value theorem

in the form

h y/2 d

1 dx

where 'e-'ý Y/2,

so 1 Y/2 dx
11121 < • 5 xw•-y)

giving

1 £n ( 2+1)



We note that

y-6 (2)

with an error of order y-NA(ny)" 2 . Eqn(2) gives

h3 1 + InS +0))

Similarly

h5 1 ( .e -Z ne +01))

So h,3 + h5 ,'I

Also

1h4 1 4 2_ "

y ( Zny) 2

Finally

h d~x
=f xA tnx(x-y)

2y

00

1 dx -2, n ,/2+1)

<tn(2y) f (x-Y) - &n(2y)
2y

Now y' h2 can be made arbitrarily small by choosing d sufficiently

large. Finally, ykh1 , y•(h3+h), A5 4 and Y'h6 tend to zero as y+oo
Hence

y(y) -. 0 as y-00

A similar argument is valid if f(x) = i/4n.Ox.



APPEnDIX B

Convergence of Legendre Series and Cosine Series

First we discuss why Legendre series like (3.1) have elliptic

regions of convergence in the complex cos 0 - plane. Then we show how

to deduce the ellipse of convergence for the Legendre series from the

position of the singularities in the Mandelstam representation.

We define P n(z), where z may be complex, by

pn(Z) - (2n-1)1! n- n(n-1) n-z n(n-)(Ln-,)(n-3) n-4
n n!) I n 2(2n-1) + 2.4.(2n-1)(2n-3)(i)

Let z= x + iy when x and y are real. For z = x where IxJf 1, we

write x = cos @ where 9 is real, and we have

Pn(x) = 2( )12n Cos(nQ)1-1.n C1s((n- .2).) 1.3n(2n-1) o3)COx((n-4))+•
Pnx 2 n ni 1  .2 n-1 Cos((-Z)Gn-i Cn-3

(2)

Eqn.(2) gives Pn(z) for unphysical values of z if we write Q=a+ip and

z = Cos(M + i A )

= Cos a CoshP -i Sin a Sin hf3

where m and ( are real and 13 ;. 0. On the real axis x>1 we have

c-= 0 and x = Cos h1 , while the portion x e -1 is given by a= n, x-Coský

If n is large Stirling's Theorem shows that eqn(2) has the

asymptotic form

P(x)••n {Cos(nQ)+2 Cos((n-z)g)+ 1.2 2 Cos((n-4)2)

+ 1 !3.5 - Cos((n-6)9) +
1.2.3 23

This is a suitable expression for examining the form of P%(Z) for large

n. Using (2) and (3) with q> 0 we get

P nrZ ! 2z cos(n(a4ls + I (5)

I



where

F1q) -~ 2,8~ +i 1.3 -2 4# 41a + 61.2 6 t + ... (6)

The approximation (5) is only valid for %A .S Since > 0
th.- series (6) converges, and gives(*)

F(a,1 e )=(i - e-2e2ia)-Y (7)

(O) The asymptotic estimate given by eqns (5) and (7) is sometimes

written in the form

P (z:"= 1--- exp • i(n+l)09 + i"/4 m •

d27n Sin 0

From (5) and (7) we have the asymptotic behaviour

1P n znP j {1-2e-2/9cos2x+e(8

00
The convergenee of a Legendre series nE0oQn P n(Z) is therefore determined

by the eonvergence of the seriesnE a n e nA _•.
n=o n .

If -

i eim ( an iY30e (9)

then by Cauchy's test, the latter series converges for t < ýo
The points z for which 0 =,o lie on the'ellipse

2 2
COB h2 Go + h I

sin h2

If the length of the real semi-axis is x c o

axis has length (xo0 -2_1)k sin h/90 . Finally the relation
i= x0+ (Xo,2- V ") expresses eqn.(9) in terms of xO. These results

explain the general form of Lehmann's Theorems in j 3(i).

When we use the Mandelstam representation to find the

singularities in the cosQ-plane, we have pole terms like (u - M2 )" 1 and

cuts involving (u'-u)"l,(t'-t)"1 . We can regard a cut as a line of poles,
and if we remember that u and t are linear in coo 0 when s is fixed, we



"7
see that the singularities in the z = cos 0 plane are all of the form

(xO- Z)"1 where x is real and Ix > 1. We need only consider the

singularity which gives the smallest x . The smallest value of IxoI

was called y0 (s) in § 3(iv).

Consider the expansion

1~ 1 E.( Z/ )n (10)
xo- Z 'o n=0 o

This gives the Taylor series in powers of cos 9, and it has radius of

convergence x0 (we take x0 > 0). We wish to find the ellipse of

convergence of the Legendre series for (x - z) Take the point x on

the real axis when x > 1. Then

x cosQ= cosh =- W +'/f) where

Also 1 - 2 (2 k e11)x° -ý x Xo -1•. (•_ ( yl . J'2)

where X'1, X2 are the zeros of

f 2 -2x +1

Now x0 1> , and we write r = x0 +(x0
2-1)i. Also dl 2=1, so 2 1.

Expand (11) in a Laurent series in

2- - 2 - o ov

loon 00
- + n '(/• )nf (12)

Or 21n=0' n=1

after a little rearrangement

Hence 2 -nn# oe n (). X , e+ E 'r 2 (13)
70 x A-1-Y2 !'ý n=02=

Now let the Legendre expansion be

--- = E a Pn(x) (14)
o n=O



Consider the form of this for x > 1. Putting a = 0 in (5) and using

(7) gives for 43>1 and n-> oq
f 1 1 enp

n(X)'• 2f (1- e -2# )1

Comparing with the series of positive powers of e in (13), we see that

for n large,

d -n (15)

Also (13) converges for e*, similarly the Legendre series (14)

converges for x + (x2-1)•- Xo + (x 2-1)2

(16)

i.e. for x C x

It follows from the above analysis that if the nearest singularity in

the Mandelstam representation is y0 (s), the Legendre expansion for the

scattering amplitude converges in an ellipse with foci x = + 1, and semi-

axes yo(s),( ( y(s))2 - 1)h.

Further, by (15) 1a/n -1 (12)

.4im a n L 0 oI ((y (8))2_ 1 )Y (17)
n -"

A v'igorous derivation of the above result comes from Heine's
expansion (t ) )

tpsi- z E(2n+1) Pn( () Qn(t)
t- Z n=O

which is valid if 3 is in the interior of the ellipse which has foci 1 1

and passes through t.

( f ) See for example J15.4 of E.T.Whittaker and G.N.Watson,

Modern Analysis (Cambridge University Press, New York, 1952). For

further details of the asymptotic expansion of P (z) for large nn

see f11.3 of E.T.Copson, Theory of Functions of a Complex Variable,

(Oxford University Press, New York, 1952)



Figure captions 
119.

Fig. 1 The contour C and the contours around the cuts of f(s) used

in deriving eqns.(1.16), (1.17) and (2.1).

Fig. 2 Experimental values of the total n+ + p and w- + p cross

sections 0, and (_ at high energies. The broken lines are

possible smooth fits to the data. The values used are based

on the results of M.J.Longo et al; Phys.Rev. Letters 1, 568

(1959); G. von Dardel et al, Ibid Z, 127 (1961); S.J.Lindenbaum

et al; Ibid 2, 352 (1961).

Fig, The region to the right of the curve shows where the spectral

function /P 1 2 (ut) is non-zero.

Fig. 4 The region to the right of the curve shows where the spectral

function Q 1(Su) is non-zero.

Fig. 5 The various continuation regions for Re A(+)( )/, A2 ) in the

real (A 2 ,q2 ) plane.

Fig. 6 Experimental values of the total n+ + p and n- + p total cross-

sections C + and Cr in the range 0.4 BeV to 2.0 BeV. The

curves are possible smooth fits to the experimental values.

Fig. ? The values of Im B+(cLOL,0) and Im B_() L,0) up to 1.4 BeV.

The vertical scales are in natural units ( t =c = I = 1).

Fig. 8 The values of Im A(-), and Im B(-)' up to 1.4 BeV. The vertical

scales are in natural units.



120.

F The solid curve shows the predicted values of Re sI up to

120 MeV. The experimental pAnt at 9q MeV is the Liverpool

result (reference (114)). The broken curve from 120 MeV

to 350 MeV is obtained by using the predicted values of

Re(s -S 3) shown in Fig. 12 and the extrapolated values of

Re s3 given by the broken line in Fig. 10.

FiX.1O The solid curve shows the predicted values of Re 83 up to 120

MeV. The experimental values shown are the Liverpool result at

98 MeV (reference (114)) and the result of Foote et al. at

310 MeV. The broken curve from 120 MeV up to 350 MeV is a

smooth continuation of the predicted values drawn to pass through

the experimental value at 310 MeV.

Fig. 11 Predicted values of the small p-wave scattering aiaplitudes

Re p11 , Re P3 1 , Re P1 3 are shown up to 120 MeV. Between

120 MeV and 220 MeV we show conjectured values which arc in

agreement with the predicted values of Re (p 1 1 -P 3 1 ) and

Re (p3 3 -p 1 3 ) shown in Figs. 13 and 14, and with the experimental

data which is discussed in § 5(v) below.

Fig. 12 The predicted values of Re(s -s 3). The broken lines show other

predictions by the CGLN method due to Finn and H~hler and Dietz.

The latter approximated the dispersion integrals by inserting

o2 the (, ) resonance, and then made a rough estimate of

the necessary corrections. The curve -.-. shows the results

of Dietz (Karlsruhe preprint (1961)) who tried to estimate these

corrections by using a subtracted dispersion relation and

incorporating knowledge of the T=1 n-n interaction.

F The predicted values of Re(p 1 1 -P 3 1 ). The solid line shows the

values derived using the parameters given in eqn(4. 4 9). The broken

line shows the values obtained using a1 1-a3 1= -0.060. The experi-

mental values at 98 MeV, 224 MeV and 310 MeV are those discussed

in the text.

Finei The predicted values of Re(p 3 -pl3), using the parameten given
in eqn(4.49).
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